|
Records |
Links |
|
Author |
Miguel Angel Bautista; Antonio Hernandez; Sergio Escalera; Laura Igual; Oriol Pujol; Josep Moya; Veronica Violant; Maria Teresa Anguera |
|
|
Title |
A Gesture Recognition System for Detecting Behavioral Patterns of ADHD |
Type |
Journal Article |
|
Year |
2016 |
Publication |
IEEE Transactions on System, Man and Cybernetics, Part B |
Abbreviated Journal |
TSMCB |
|
|
Volume |
46 |
Issue |
1 |
Pages |
136-147 |
|
|
Keywords |
Gesture Recognition; ADHD; Gaussian Mixture Models; Convex Hulls; Dynamic Time Warping; Multi-modal RGB-Depth data |
|
|
Abstract |
We present an application of gesture recognition using an extension of Dynamic Time Warping (DTW) to recognize behavioural patterns of Attention Deficit Hyperactivity Disorder (ADHD). We propose an extension of DTW using one-class classifiers in order to be able to encode the variability of a gesture category, and thus, perform an alignment between a gesture sample and a gesture class. We model the set of gesture samples of a certain gesture category using either GMMs or an approximation of Convex Hulls. Thus, we add a theoretical contribution to classical warping path in DTW by including local modeling of intra-class gesture variability. This methodology is applied in a clinical context, detecting a group of ADHD behavioural patterns defined by experts in psychology/psychiatry, to provide support to clinicians in the diagnose procedure. The proposed methodology is tested on a novel multi-modal dataset (RGB plus Depth) of ADHD children recordings with behavioural patterns. We obtain satisfying results when compared to standard state-of-the-art approaches in the DTW context. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; MILAB; |
Approved |
no |
|
|
Call Number |
Admin @ si @ BHE2016 |
Serial |
2566 |
|
Permanent link to this record |
|
|
|
|
Author |
Meysam Madadi; Sergio Escalera; Jordi Gonzalez; Xavier Roca; Felipe Lumbreras |
|
|
Title |
Multi-part body segmentation based on depth maps for soft biometry analysis |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
56 |
Issue |
|
Pages |
14-21 |
|
|
Keywords |
3D shape context; 3D point cloud alignment; Depth maps; Human body segmentation; Soft biometry analysis |
|
|
Abstract |
This paper presents a novel method extracting biometric measures using depth sensors. Given a multi-part labeled training data, a new subject is aligned to the best model of the dataset, and soft biometrics such as lengths or circumference sizes of limbs and body are computed. The process is performed by training relevant pose clusters, defining a representative model, and fitting a 3D shape context descriptor within an iterative matching procedure. We show robust measures by applying orthogonal plates to body hull. We test our approach in a novel full-body RGB-Depth data set, showing accurate estimation of soft biometrics and better segmentation accuracy in comparison with random forest approach without requiring large training data. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; ISE; ADAS; 600.076;600.049; 600.063; 600.054; 302.018;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ MEG2015 |
Serial |
2588 |
|
Permanent link to this record |
|
|
|
|
Author |
Frederic Sampedro; Anna Domenech; Sergio Escalera; Ignasi Carrio |
|
|
Title |
Deriving global quantitative tumor response parameters from 18F-FDG PET-CT scans in patients with non-Hodgkins lymphoma |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Nuclear Medicine Communications |
Abbreviated Journal |
NMC |
|
|
Volume |
36 |
Issue |
4 |
Pages |
328-333 |
|
|
Keywords |
|
|
|
Abstract |
OBJECTIVES:
The aim of the study was to address the need for quantifying the global cancer time evolution magnitude from a pair of time-consecutive positron emission tomography-computed tomography (PET-CT) scans. In particular, we focus on the computation of indicators using image-processing techniques that seek to model non-Hodgkin's lymphoma (NHL) progression or response severity.
MATERIALS AND METHODS:
A total of 89 pairs of time-consecutive PET-CT scans from NHL patients were stored in a nuclear medicine station for subsequent analysis. These were classified by a consensus of nuclear medicine physicians into progressions, partial responses, mixed responses, complete responses, and relapses. The cases of each group were ordered by magnitude following visual analysis. Thereafter, a set of quantitative indicators designed to model the cancer evolution magnitude within each group were computed using semiautomatic and automatic image-processing techniques. Performance evaluation of the proposed indicators was measured by a correlation analysis with the expert-based visual analysis.
RESULTS:
The set of proposed indicators achieved Pearson's correlation results in each group with respect to the expert-based visual analysis: 80.2% in progressions, 77.1% in partial response, 68.3% in mixed response, 88.5% in complete response, and 100% in relapse. In the progression and mixed response groups, the proposed indicators outperformed the common indicators used in clinical practice [changes in metabolic tumor volume, mean, maximum, peak standardized uptake value (SUV mean, SUV max, SUV peak), and total lesion glycolysis] by more than 40%.
CONCLUSION:
Computing global indicators of NHL response using PET-CT imaging techniques offers a strong correlation with the associated expert-based visual analysis, motivating the future incorporation of such quantitative and highly observer-independent indicators in oncological decision making or treatment response evaluation scenarios. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ SDE2015 |
Serial |
2605 |
|
Permanent link to this record |
|
|
|
|
Author |
Frederic Sampedro; Sergio Escalera; Anna Domenech; Ignasi Carrio |
|
|
Title |
A computational framework for cancer response assessment based on oncological PET-CT scans |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Computers in Biology and Medicine |
Abbreviated Journal |
CBM |
|
|
Volume |
55 |
Issue |
|
Pages |
92–99 |
|
|
Keywords |
Computer aided diagnosis; Nuclear medicine; Machine learning; Image processing; Quantitative analysis |
|
|
Abstract |
In this work we present a comprehensive computational framework to help in the clinical assessment of cancer response from a pair of time consecutive oncological PET-CT scans. In this scenario, the design and implementation of a supervised machine learning system to predict and quantify cancer progression or response conditions by introducing a novel feature set that models the underlying clinical context is described. Performance results in 100 clinical cases (corresponding to 200 whole body PET-CT scans) in comparing expert-based visual analysis and classifier decision making show up to 70% accuracy within a completely automatic pipeline and 90% accuracy when providing the system with expert-guided PET tumor segmentation masks. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ SED2014 |
Serial |
2606 |
|
Permanent link to this record |
|
|
|
|
Author |
Andres Traumann; Gholamreza Anbarjafari; Sergio Escalera |
|
|
Title |
Accurate 3D Measurement Using Optical Depth Information |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Electronic Letters |
Abbreviated Journal |
EL |
|
|
Volume |
51 |
Issue |
18 |
Pages |
1420-1422 |
|
|
Keywords |
|
|
|
Abstract |
A novel three-dimensional measurement technique is proposed. The methodology consists in mapping from the screen coordinates reported by the optical camera to the real world, and integrating distance gradients from the beginning to the end point, while also minimising the error through fitting pixel locations to a smooth curve. The results demonstrate accuracy of less than half a centimetre using Microsoft Kinect II. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ TAE2015 |
Serial |
2647 |
|
Permanent link to this record |