|
Records |
Links |
|
Author |
Antonio Hernandez; Miguel Angel Bautista; Xavier Perez Sala; Victor Ponce; Sergio Escalera; Xavier Baro; Oriol Pujol; Cecilio Angulo |


|
|
Title |
Probability-based Dynamic Time Warping and Bag-of-Visual-and-Depth-Words for Human Gesture Recognition in RGB-D |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
50 |
Issue |
1 |
Pages |
112-121 |
|
|
Keywords |
RGB-D; Bag-of-Words; Dynamic Time Warping; Human Gesture Recognition |
|
|
Abstract |
PATREC5825
We present a methodology to address the problem of human gesture segmentation and recognition in video and depth image sequences. A Bag-of-Visual-and-Depth-Words (BoVDW) model is introduced as an extension of the Bag-of-Visual-Words (BoVW) model. State-of-the-art RGB and depth features, including a newly proposed depth descriptor, are analysed and combined in a late fusion form. The method is integrated in a Human Gesture Recognition pipeline, together with a novel probability-based Dynamic Time Warping (PDTW) algorithm which is used to perform prior segmentation of idle gestures. The proposed DTW variant uses samples of the same gesture category to build a Gaussian Mixture Model driven probabilistic model of that gesture class. Results of the whole Human Gesture Recognition pipeline in a public data set show better performance in comparison to both standard BoVW model and DTW approach. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
HuPBA;MV; 605.203;OR;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ HBP2014 |
Serial |
2353 |
|
Permanent link to this record |
|
|
|
|
Author |
Hugo Jair Escalante; Victor Ponce; Sergio Escalera; Xavier Baro; Alicia Morales-Reyes; Jose Martinez-Carranza |


|
|
Title |
Evolving weighting schemes for the Bag of Visual Words |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Neural Computing and Applications |
Abbreviated Journal |
Neural Computing and Applications |
|
|
Volume |
28 |
Issue |
5 |
Pages |
925–939 |
|
|
Keywords |
Bag of Visual Words; Bag of features; Genetic programming; Term-weighting schemes; Computer vision |
|
|
Abstract |
The Bag of Visual Words (BoVW) is an established representation in computer vision. Taking inspiration from text mining, this representation has proved
to be very effective in many domains. However, in most cases, standard term-weighting schemes are adopted (e.g.,term-frequency or TF-IDF). It remains open the question of whether alternative weighting schemes could boost the
performance of methods based on BoVW. More importantly, it is unknown whether it is possible to automatically learn and determine effective weighting schemes from
scratch. This paper brings some light into both of these unknowns. On the one hand, we report an evaluation of the most common weighting schemes used in text mining, but rarely used in computer vision tasks. Besides, we propose an evolutionary algorithm capable of automatically learning weighting schemes for computer vision problems. We report empirical results of an extensive study in several computer vision problems. Results show the usefulness of the proposed method. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
Springer |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
HUPBA;MV; no menciona;OR;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ EPE2017 |
Serial |
2743 |
|
Permanent link to this record |
|
|
|
|
Author |
Victor Ponce; Sergio Escalera; Marc Perez; Oriol Janes; Xavier Baro |

|
|
Title |
Non-Verbal Communication Analysis in Victim-Offender Mediations |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
67 |
Issue |
1 |
Pages |
19-27 |
|
|
Keywords |
Victim–Offender Mediation; Multi-modal human behavior analysis; Face and gesture recognition; Social signal processing; Computer vision; Machine learning |
|
|
Abstract |
We present a non-invasive ambient intelligence framework for the semi-automatic analysis of non-verbal communication applied to the restorative justice field. We propose the use of computer vision and social signal processing technologies in real scenarios of Victim–Offender Mediations, applying feature extraction techniques to multi-modal audio-RGB-depth data. We compute a set of behavioral indicators that define communicative cues from the fields of psychology and observational methodology. We test our methodology on data captured in real Victim–Offender Mediation sessions in Catalonia. We define the ground truth based on expert opinions when annotating the observed social responses. Using different state of the art binary classification approaches, our system achieves recognition accuracies of 86% when predicting satisfaction, and 79% when predicting both agreement and receptivity. Applying a regression strategy, we obtain a mean deviation for the predictions between 0.5 and 0.7 in the range [1–5] for the computed social signals. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
HuPBA;MV;OR;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ PEP2015 |
Serial |
2583 |
|
Permanent link to this record |
|
|
|
|
Author |
Julio C. S. Jacques Junior; Yagmur Gucluturk; Marc Perez; Umut Guçlu; Carlos Andujar; Xavier Baro; Hugo Jair Escalante; Isabelle Guyon; Marcel A. J. van Gerven; Rob van Lier; Sergio Escalera |

|
|
Title |
First Impressions: A Survey on Vision-Based Apparent Personality Trait Analysis |
Type |
Journal Article |
|
Year |
2022 |
Publication |
IEEE Transactions on Affective Computing |
Abbreviated Journal |
TAC |
|
|
Volume |
13 |
Issue |
1 |
Pages |
75-95 |
|
|
Keywords |
Personality computing; first impressions; person perception; big-five; subjective bias; computer vision; machine learning; nonverbal signals; facial expression; gesture; speech analysis; multi-modal recognition |
|
|
Abstract |
Personality analysis has been widely studied in psychology, neuropsychology, and signal processing fields, among others. From the past few years, it also became an attractive research area in visual computing. From the computational point of view, by far speech and text have been the most considered cues of information for analyzing personality. However, recently there has been an increasing interest from the computer vision community in analyzing personality from visual data. Recent computer vision approaches are able to accurately analyze human faces, body postures and behaviors, and use these information to infer apparent personality traits. Because of the overwhelming research interest in this topic, and of the potential impact that this sort of methods could have in society, we present in this paper an up-to-date review of existing vision-based approaches for apparent personality trait recognition. We describe seminal and cutting edge works on the subject, discussing and comparing their distinctive features and limitations. Future venues of research in the field are identified and discussed. Furthermore, aspects on the subjectivity in data labeling/evaluation, as well as current datasets and challenges organized to push the research on the field are reviewed. |
|
|
Address |
1 Jan.-March 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
HuPBA;MV;OR;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ JGP2022 |
Serial |
3724 |
|
Permanent link to this record |
|
|
|
|
Author |
Adrien Pavao; Isabelle Guyon; Anne-Catherine Letournel; Dinh-Tuan Tran; Xavier Baro; Hugo Jair Escalante; Sergio Escalera; Tyler Thomas; Zhen Xu |

|
|
Title |
CodaLab Competitions: An Open Source Platform to Organize Scientific Challenges |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Journal of Machine Learning Research |
Abbreviated Journal |
JMLR |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
CodaLab Competitions is an open source web platform designed to help data scientists and research teams to crowd-source the resolution of machine learning problems through the organization of competitions, also called challenges or contests. CodaLab Competitions provides useful features such as multiple phases, results and code submissions, multi-score leaderboards, and jobs running
inside Docker containers. The platform is very flexible and can handle large scale experiments, by allowing organizers to upload large datasets and provide their own CPU or GPU compute workers. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
HUPBA;MV;OR;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ PGL2023 |
Serial |
3973 |
|
Permanent link to this record |