|
Records |
Links |
|
Author |
Oriol Pujol; Debora Gil; Petia Radeva |


|
|
Title |
Fundamentals of Stop and Go active models |
Type |
Journal Article |
|
Year |
2005 |
Publication |
Image and Vision Computing |
Abbreviated Journal |
|
|
|
Volume |
23 |
Issue |
8 |
Pages |
681-691 |
|
|
Keywords  |
Deformable models; Geodesic snakes; Region-based segmentation |
|
|
Abstract |
An efficient snake formulation should conform to the idea of picking the smoothest curve among all the shapes approximating an object of interest. In current geodesic snakes, the regularizing curvature also affects the convergence stage, hindering the latter at concave regions. In the present work, we make use of characteristic functions to define a novel geodesic formulation that decouples regularity and convergence. This term decoupling endows the snake with higher adaptability to non-convex shapes. Convergence is ensured by splitting the definition of the external force into an attractive vector field and a repulsive one. In our paper, we propose to use likelihood maps as approximation of characteristic functions of object appearance. The better efficiency and accuracy of our decoupled scheme are illustrated in the particular case of feature space-based segmentation. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Butterworth-Heinemann |
Place of Publication |
Newton, MA, USA |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0262-8856 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB;HuPBA |
Approved |
no |
|
|
Call Number |
IAM @ iam @ PGR2005 |
Serial |
1629 |
|
Permanent link to this record |
|
|
|
|
Author |
Francesco Ciompi; Oriol Pujol; Petia Radeva |

|
|
Title |
ECOC-DRF: Discriminative random fields based on error correcting output codes |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
47 |
Issue |
6 |
Pages |
2193-2204 |
|
|
Keywords  |
Discriminative random fields; Error-correcting output codes; Multi-class classification; Graphical models |
|
|
Abstract |
We present ECOC-DRF, a framework where potential functions for Discriminative Random Fields are formulated as an ensemble of classifiers. We introduce the label trick, a technique to express transitions in the pairwise potential as meta-classes. This allows to independently learn any possible transition between labels without assuming any pre-defined model. The Error Correcting Output Codes matrix is used as ensemble framework for the combination of margin classifiers. We apply ECOC-DRF to a large set of classification problems, covering synthetic, natural and medical images for binary and multi-class cases, outperforming state-of-the art in almost all the experiments. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
LAMP; HuPBA; MILAB; 605.203; 600.046; 601.043; 600.079 |
Approved |
no |
|
|
Call Number |
Admin @ si @ CPR2014b |
Serial |
2470 |
|
Permanent link to this record |
|
|
|
|
Author |
Reuben Dorent; Aaron Kujawa; Marina Ivory; Spyridon Bakas; Nikola Rieke; Samuel Joutard; Ben Glocker; Jorge Cardoso; Marc Modat; Kayhan Batmanghelich; Arseniy Belkov; Maria Baldeon Calisto; Jae Won Choi; Benoit M. Dawant; Hexin Dong; Sergio Escalera; Yubo Fan; Lasse Hansen; Mattias P. Heinrich; Smriti Joshi; Victoriya Kashtanova; Hyeon Gyu Kim; Satoshi Kondo; Christian N. Kruse; Susana K. Lai-Yuen; Hao Li; Han Liu; Buntheng Ly; Ipek Oguz; Hyungseob Shin; Boris Shirokikh; Zixian Su; Guotai Wang; Jianghao Wu; Yanwu Xu; Kai Yao; Li Zhang; Sebastien Ourselin, |


|
|
Title |
CrossMoDA 2021 challenge: Benchmark of Cross-Modality Domain Adaptation techniques for Vestibular Schwannoma and Cochlea Segmentation |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Medical Image Analysis |
Abbreviated Journal |
MIA |
|
|
Volume |
83 |
Issue |
|
Pages |
102628 |
|
|
Keywords  |
Domain Adaptation; Segmen tation; Vestibular Schwnannoma |
|
|
Abstract |
Domain Adaptation (DA) has recently raised strong interests in the medical imaging community. While a large variety of DA techniques has been proposed for image segmentation, most of these techniques have been validated either on private datasets or on small publicly available datasets. Moreover, these datasets mostly addressed single-class problems. To tackle these limitations, the Cross-Modality Domain Adaptation (crossMoDA) challenge was organised in conjunction with the 24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2021). CrossMoDA is the first large and multi-class benchmark for unsupervised cross-modality DA. The challenge's goal is to segment two key brain structures involved in the follow-up and treatment planning of vestibular schwannoma (VS): the VS and the cochleas. Currently, the diagnosis and surveillance in patients with VS are performed using contrast-enhanced T1 (ceT1) MRI. However, there is growing interest in using non-contrast sequences such as high-resolution T2 (hrT2) MRI. Therefore, we created an unsupervised cross-modality segmentation benchmark. The training set provides annotated ceT1 (N=105) and unpaired non-annotated hrT2 (N=105). The aim was to automatically perform unilateral VS and bilateral cochlea segmentation on hrT2 as provided in the testing set (N=137). A total of 16 teams submitted their algorithm for the evaluation phase. The level of performance reached by the top-performing teams is strikingly high (best median Dice – VS:88.4%; Cochleas:85.7%) and close to full supervision (median Dice – VS:92.5%; Cochleas:87.7%). All top-performing methods made use of an image-to-image translation approach to transform the source-domain images into pseudo-target-domain images. A segmentation network was then trained using these generated images and the manual annotations provided for the source image. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ DKI2023 |
Serial |
3706 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Escalera; R. M. Martinez; Jordi Vitria; Petia Radeva; Maria Teresa Anguera |

|
|
Title |
Deteccion automatica de la dominancia en conversaciones diadicas |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Escritos de Psicologia |
Abbreviated Journal |
EP |
|
|
Volume |
3 |
Issue |
2 |
Pages |
41–45 |
|
|
Keywords  |
Dominance detection; Non-verbal communication; Visual features |
|
|
Abstract |
Dominance is referred to the level of influence that a person has in a conversation. Dominance is an important research area in social psychology, but the problem of its automatic estimation is a very recent topic in the contexts of social and wearable computing. In this paper, we focus on the dominance detection of visual cues. We estimate the correlation among observers by categorizing the dominant people in a set of face-to-face conversations. Different dominance indicators from gestural communication are defined, manually annotated, and compared to the observers' opinion. Moreover, these indicators are automatically extracted from video sequences and learnt by using binary classifiers. Results from the three analyses showed a high correlation and allows the categorization of dominant people in public discussion video sequences. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1989-3809 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; OR; MILAB;MV |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ EMV2010 |
Serial |
1315 |
|
Permanent link to this record |
|
|
|
|
Author |
Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera |


|
|
Title |
A Genetic-based Subspace Analysis Method for Improving Error-Correcting Output Coding |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
46 |
Issue |
10 |
Pages |
2830-2839 |
|
|
Keywords  |
Error Correcting Output Codes; Evolutionary computation; Multiclass classification; Feature subspace; Ensemble classification |
|
|
Abstract |
Two key factors affecting the performance of Error Correcting Output Codes (ECOC) in multiclass classification problems are the independence of binary classifiers and the problem-dependent coding design. In this paper, we propose an evolutionary algorithm-based approach to the design of an application-dependent codematrix in the ECOC framework. The central idea of this work is to design a three-dimensional codematrix, where the third dimension is the feature space of the problem domain. In order to do that, we consider the feature space in the design process of the codematrix with the aim of improving the independence and accuracy of binary classifiers. The proposed method takes advantage of some basic concepts of ensemble classification, such as diversity of classifiers, and also benefits from the evolutionary approach for optimizing the three-dimensional codematrix, taking into account the problem domain. We provide a set of experimental results using a set of benchmark datasets from the UCI Machine Learning Repository, as well as two real multiclass Computer Vision problems. Both sets of experiments are conducted using two different base learners: Neural Networks and Decision Trees. The results show that the proposed method increases the classification accuracy in comparison with the state-of-the-art ECOC coding techniques. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ BGE2013a |
Serial |
2247 |
|
Permanent link to this record |