|
Records |
Links |
|
Author |
Meysam Madadi; Hugo Bertiche; Sergio Escalera |


|
|
Title |
Deep unsupervised 3D human body reconstruction from a sparse set of landmarks |
Type |
Journal Article |
|
Year |
2021 |
Publication |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
129 |
Issue  |
|
Pages |
2499–2512 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we propose the first deep unsupervised approach in human body reconstruction to estimate body surface from a sparse set of landmarks, so called DeepMurf. We apply a denoising autoencoder to estimate missing landmarks. Then we apply an attention model to estimate body joints from landmarks. Finally, a cascading network is applied to regress parameters of a statistical generative model that reconstructs body. Our set of proposed loss functions allows us to train the network in an unsupervised way. Results on four public datasets show that our approach accurately reconstructs the human body from real world mocap data. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ MBE2021 |
Serial |
3654 |
|
Permanent link to this record |
|
|
|
|
Author |
Swathikiran Sudhakaran; Sergio Escalera;Oswald Lanz |


|
|
Title |
Learning to Recognize Actions on Objects in Egocentric Video with Attention Dictionaries |
Type |
Journal Article |
|
Year |
2021 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
|
Issue  |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
We present EgoACO, a deep neural architecture for video action recognition that learns to pool action-context-object descriptors from frame level features by leveraging the verb-noun structure of action labels in egocentric video datasets. The core component of EgoACO is class activation pooling (CAP), a differentiable pooling operation that combines ideas from bilinear pooling for fine-grained recognition and from feature learning for discriminative localization. CAP uses self-attention with a dictionary of learnable weights to pool from the most relevant feature regions. Through CAP, EgoACO learns to decode object and scene context descriptors from video frame features. For temporal modeling in EgoACO, we design a recurrent version of class activation pooling termed Long Short-Term Attention (LSTA). LSTA extends convolutional gated LSTM with built-in spatial attention and a re-designed output gate. Action, object and context descriptors are fused by a multi-head prediction that accounts for the inter-dependencies between noun-verb-action structured labels in egocentric video datasets. EgoACO features built-in visual explanations, helping learning and interpretation. Results on the two largest egocentric action recognition datasets currently available, EPIC-KITCHENS and EGTEA, show that by explicitly decoding action-context-object descriptors, EgoACO achieves state-of-the-art recognition performance. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ SEL2021 |
Serial |
3656 |
|
Permanent link to this record |
|
|
|
|
Author |
Razieh Rastgoo; Kourosh Kiani; Sergio Escalera |


|
|
Title |
Real-time Isolated Hand Sign Language RecognitioN Using Deep Networks and SVD |
Type |
Journal |
|
Year |
2022 |
Publication |
Journal of Ambient Intelligence and Humanized Computing |
Abbreviated Journal |
|
|
|
Volume |
13 |
Issue  |
|
Pages |
591–611 |
|
|
Keywords |
|
|
|
Abstract |
One of the challenges in computer vision models, especially sign language, is real-time recognition. In this work, we present a simple yet low-complex and efficient model, comprising single shot detector, 2D convolutional neural network, singular value decomposition (SVD), and long short term memory, to real-time isolated hand sign language recognition (IHSLR) from RGB video. We employ the SVD method as an efficient, compact, and discriminative feature extractor from the estimated 3D hand keypoints coordinators. Despite the previous works that employ the estimated 3D hand keypoints coordinates as raw features, we propose a novel and revolutionary way to apply the SVD to the estimated 3D hand keypoints coordinates to get more discriminative features. SVD method is also applied to the geometric relations between the consecutive segments of each finger in each hand and also the angles between these sections. We perform a detailed analysis of recognition time and accuracy. One of our contributions is that this is the first time that the SVD method is applied to the hand pose parameters. Results on four datasets, RKS-PERSIANSIGN (99.5±0.04), First-Person (91±0.06), ASVID (93±0.05), and isoGD (86.1±0.04), confirm the efficiency of our method in both accuracy (mean+std) and time recognition. Furthermore, our model outperforms or gets competitive results with the state-of-the-art alternatives in IHSLR and hand action recognition. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ RKE2022a |
Serial |
3660 |
|
Permanent link to this record |
|
|
|
|
Author |
Reuben Dorent; Aaron Kujawa; Marina Ivory; Spyridon Bakas; Nikola Rieke; Samuel Joutard; Ben Glocker; Jorge Cardoso; Marc Modat; Kayhan Batmanghelich; Arseniy Belkov; Maria Baldeon Calisto; Jae Won Choi; Benoit M. Dawant; Hexin Dong; Sergio Escalera; Yubo Fan; Lasse Hansen; Mattias P. Heinrich; Smriti Joshi; Victoriya Kashtanova; Hyeon Gyu Kim; Satoshi Kondo; Christian N. Kruse; Susana K. Lai-Yuen; Hao Li; Han Liu; Buntheng Ly; Ipek Oguz; Hyungseob Shin; Boris Shirokikh; Zixian Su; Guotai Wang; Jianghao Wu; Yanwu Xu; Kai Yao; Li Zhang; Sebastien Ourselin, |


|
|
Title |
CrossMoDA 2021 challenge: Benchmark of Cross-Modality Domain Adaptation techniques for Vestibular Schwannoma and Cochlea Segmentation |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Medical Image Analysis |
Abbreviated Journal |
MIA |
|
|
Volume |
83 |
Issue  |
|
Pages |
102628 |
|
|
Keywords |
Domain Adaptation; Segmen tation; Vestibular Schwnannoma |
|
|
Abstract |
Domain Adaptation (DA) has recently raised strong interests in the medical imaging community. While a large variety of DA techniques has been proposed for image segmentation, most of these techniques have been validated either on private datasets or on small publicly available datasets. Moreover, these datasets mostly addressed single-class problems. To tackle these limitations, the Cross-Modality Domain Adaptation (crossMoDA) challenge was organised in conjunction with the 24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2021). CrossMoDA is the first large and multi-class benchmark for unsupervised cross-modality DA. The challenge's goal is to segment two key brain structures involved in the follow-up and treatment planning of vestibular schwannoma (VS): the VS and the cochleas. Currently, the diagnosis and surveillance in patients with VS are performed using contrast-enhanced T1 (ceT1) MRI. However, there is growing interest in using non-contrast sequences such as high-resolution T2 (hrT2) MRI. Therefore, we created an unsupervised cross-modality segmentation benchmark. The training set provides annotated ceT1 (N=105) and unpaired non-annotated hrT2 (N=105). The aim was to automatically perform unilateral VS and bilateral cochlea segmentation on hrT2 as provided in the testing set (N=137). A total of 16 teams submitted their algorithm for the evaluation phase. The level of performance reached by the top-performing teams is strikingly high (best median Dice – VS:88.4%; Cochleas:85.7%) and close to full supervision (median Dice – VS:92.5%; Cochleas:87.7%). All top-performing methods made use of an image-to-image translation approach to transform the source-domain images into pseudo-target-domain images. A segmentation network was then trained using these generated images and the manual annotations provided for the source image. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ DKI2023 |
Serial |
3706 |
|
Permanent link to this record |
|
|
|
|
Author |
Ajian Liu; Chenxu Zhao; Zitong Yu; Jun Wan; Anyang Su; Xing Liu; Zichang Tan; Sergio Escalera; Junliang Xing; Yanyan Liang; Guodong Guo; Zhen Lei; Stan Z. Li; Shenshen Du |

|
|
Title |
Contrastive Context-Aware Learning for 3D High-Fidelity Mask Face Presentation Attack Detection |
Type |
Journal Article |
|
Year |
2022 |
Publication |
IEEE Transactions on Information Forensics and Security |
Abbreviated Journal |
TIForensicSEC |
|
|
Volume |
17 |
Issue  |
|
Pages |
2497 - 2507 |
|
|
Keywords |
|
|
|
Abstract |
Face presentation attack detection (PAD) is essential to secure face recognition systems primarily from high-fidelity mask attacks. Most existing 3D mask PAD benchmarks suffer from several drawbacks: 1) a limited number of mask identities, types of sensors, and a total number of videos; 2) low-fidelity quality of facial masks. Basic deep models and remote photoplethysmography (rPPG) methods achieved acceptable performance on these benchmarks but still far from the needs of practical scenarios. To bridge the gap to real-world applications, we introduce a large-scale Hi gh- Fi delity Mask dataset, namely HiFiMask . Specifically, a total amount of 54,600 videos are recorded from 75 subjects with 225 realistic masks by 7 new kinds of sensors. Along with the dataset, we propose a novel C ontrastive C ontext-aware L earning (CCL) framework. CCL is a new training methodology for supervised PAD tasks, which is able to learn by leveraging rich contexts accurately (e.g., subjects, mask material and lighting) among pairs of live faces and high-fidelity mask attacks. Extensive experimental evaluations on HiFiMask and three additional 3D mask datasets demonstrate the effectiveness of our method. The codes and dataset will be released soon. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
IEEE |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ LZY2022 |
Serial |
3778 |
|
Permanent link to this record |