toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Francesco Ciompi; Oriol Pujol; Carlo Gatta; Marina Alberti; Simone Balocco; Xavier Carrillo; J. Mauri; Petia Radeva edit  url
doi  openurl
  Title HoliMab: A Holistic Approach for Media-Adventitia Border Detection in Intravascular Ultrasound Type Journal Article
  Year 2012 Publication Medical Image Analysis Abbreviated Journal MIA  
  Volume 16 Issue 6 Pages 1085-1100  
  Keywords Media–Adventitia border detection; Intravascular ultrasound; Multi-Scale Stacked Sequential Learning; Error-correcting output codes; Holistic segmentation  
  Abstract We present a fully automatic methodology for the detection of the Media-Adventitia border (MAb) in human coronary artery in Intravascular Ultrasound (IVUS) images. A robust border detection is achieved by means of a holistic interpretation of the detection problem where the target object, i.e. the media layer, is considered as part of the whole vessel in the image and all the relationships between tissues are learnt. A fairly general framework exploiting multi-class tissue characterization as well as contextual information on the morphology and the appearance of the tissues is presented. The methodology is (i) validated through an exhaustive comparison with both Inter-observer variability on two challenging databases and (ii) compared with state-of-the-art methods for the detection of the MAb in IVUS. The obtained averaged values for the mean radial distance and the percentage of area difference are 0.211 mm and 10.1%, respectively. The applicability of the proposed methodology to clinical practice is also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HuPBA Approved no  
  Call Number Admin @ si @ CPG2012 Serial 1995  
Permanent link to this record
 

 
Author Miguel Angel Bautista; Sergio Escalera; Oriol Pujol edit   pdf
doi  openurl
  Title On the Design of an ECOC-Compliant Genetic Algorithm Type Journal Article
  Year 2014 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 47 Issue 2 Pages 865-884  
  Keywords  
  Abstract Genetic Algorithms (GA) have been previously applied to Error-Correcting Output Codes (ECOC) in state-of-the-art works in order to find a suitable coding matrix. Nevertheless, none of the presented techniques directly take into account the properties of the ECOC matrix. As a result the considered search space is unnecessarily large. In this paper, a novel Genetic strategy to optimize the ECOC coding step is presented. This novel strategy redefines the usual crossover and mutation operators in order to take into account the theoretical properties of the ECOC framework. Thus, it reduces the search space and lets the algorithm to converge faster. In addition, a novel operator that is able to enlarge the code in a smart way is introduced. The novel methodology is tested on several UCI datasets and four challenging computer vision problems. Furthermore, the analysis of the results done in terms of performance, code length and number of Support Vectors shows that the optimization process is able to find very efficient codes, in terms of the trade-off between classification performance and the number of classifiers. Finally, classification performance per dichotomizer results shows that the novel proposal is able to obtain similar or even better results while defining a more compact number of dichotomies and SVs compared to state-of-the-art approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ BEP2013 Serial 2254  
Permanent link to this record
 

 
Author Miguel Reyes; Albert Clapes; Jose Ramirez; Juan R Revilla; Sergio Escalera edit   pdf
url  doi
openurl 
  Title Automatic Digital Biometry Analysis based on Depth Maps Type Journal Article
  Year 2013 Publication Computers in Industry Abbreviated Journal COMPUTIND  
  Volume 64 Issue 9 Pages 1316-1325  
  Keywords Multi-modal data fusion; Depth maps; Posture analysis; Anthropometric data; Musculo-skeletal disorders; Gesture analysis  
  Abstract World Health Organization estimates that 80% of the world population is affected by back-related disorders during his life. Current practices to analyze musculo-skeletal disorders (MSDs) are expensive, subjective, and invasive. In this work, we propose a tool for static body posture analysis and dynamic range of movement estimation of the skeleton joints based on 3D anthropometric information from multi-modal data. Given a set of keypoints, RGB and depth data are aligned, depth surface is reconstructed, keypoints are matched, and accurate measurements about posture and spinal curvature are computed. Given a set of joints, range of movement measurements is also obtained. Moreover, gesture recognition based on joint movements is performed to look for the correctness in the development of physical exercises. The system shows high precision and reliable measurements, being useful for posture reeducation purposes to prevent MSDs, as well as tracking the posture evolution of patients in rehabilitation treatments.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ RCR2013 Serial 2252  
Permanent link to this record
 

 
Author Albert Clapes; Miguel Reyes; Sergio Escalera edit   pdf
url  doi
openurl 
  Title Multi-modal User Identification and Object Recognition Surveillance System Type Journal Article
  Year 2013 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 34 Issue 7 Pages 799-808  
  Keywords Multi-modal RGB-Depth data analysis; User identification; Object recognition; Intelligent surveillance; Visual features; Statistical learning  
  Abstract We propose an automatic surveillance system for user identification and object recognition based on multi-modal RGB-Depth data analysis. We model a RGBD environment learning a pixel-based background Gaussian distribution. Then, user and object candidate regions are detected and recognized using robust statistical approaches. The system robustly recognizes users and updates the system in an online way, identifying and detecting new actors in the scene. Moreover, segmented objects are described, matched, recognized, and updated online using view-point 3D descriptions, being robust to partial occlusions and local 3D viewpoint rotations. Finally, the system saves the historic of user–object assignments, being specially useful for surveillance scenarios. The system has been evaluated on a novel data set containing different indoor/outdoor scenarios, objects, and users, showing accurate recognition and better performance than standard state-of-the-art approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; 600.046; 605.203;MILAB Approved no  
  Call Number Admin @ si @ CRE2013 Serial 2248  
Permanent link to this record
 

 
Author Simone Balocco; Carlo Gatta; Francesco Ciompi; A. Wahle; Petia Radeva; S. Carlier; G. Unal; E. Sanidas; F. Mauri; X. Carillo; T. Kovarnik; C. Wang; H. Chen; T. P. Exarchos; D. I. Fotiadis; F. Destrempes; G. Cloutier; Oriol Pujol; Marina Alberti; E. G. Mendizabal-Ruiz; M. Rivera; T. Aksoy; R. W. Downe; I. A. Kakadiaris edit   pdf
doi  openurl
  Title Standardized evaluation methodology and reference database for evaluating IVUS image segmentation Type Journal Article
  Year 2014 Publication Computerized Medical Imaging and Graphics Abbreviated Journal CMIG  
  Volume 38 Issue 2 Pages 70-90  
  Keywords IVUS (intravascular ultrasound); Evaluation framework; Algorithm comparison; Image segmentation  
  Abstract This paper describes an evaluation framework that allows a standardized and quantitative comparison of IVUS lumen and media segmentation algorithms. This framework has been introduced at the MICCAI 2011 Computing and Visualization for (Intra)Vascular Imaging (CVII) workshop, comparing the results of eight teams that participated.
We describe the available data-base comprising of multi-center, multi-vendor and multi-frequency IVUS datasets, their acquisition, the creation of the reference standard and the evaluation measures. The approaches address segmentation of the lumen, the media, or both borders; semi- or fully-automatic operation; and 2-D vs. 3-D methodology. Three performance measures for quantitative analysis have
been proposed. The results of the evaluation indicate that segmentation of the vessel lumen and media is possible with an accuracy that is comparable to manual annotation when semi-automatic methods are used, as well as encouraging results can be obtained also in case of fully-automatic segmentation. The analysis performed in this paper also highlights the challenges in IVUS segmentation that remains to be
solved.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; LAMP; HuPBA; 600.046; 600.063; 600.079 Approved no  
  Call Number Admin @ si @ BGC2013 Serial 2314  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: