|
Records |
Links |
|
Author |
Sergio Escalera; Jordi Gonzalez; Xavier Baro; Jamie Shotton |

|
|
Title |
Guest Editor Introduction to the Special Issue on Multimodal Human Pose Recovery and Behavior Analysis |
Type |
Journal Article |
|
Year |
2016 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
28 |
Issue |
|
Pages  |
1489 - 1491 |
|
|
Keywords |
|
|
|
Abstract |
The sixteen papers in this special section focus on human pose recovery and behavior analysis (HuPBA). This is one of the most challenging topics in computer vision, pattern analysis, and machine learning. It is of critical importance for application areas that include gaming, computer interaction, human robot interaction, security, commerce, assistive technologies and rehabilitation, sports, sign language recognition, and driver assistance technology, to mention just a few. In essence, HuPBA requires dealing with the articulated nature of the human body, changes in appearance due to clothing, and the inherent problems of clutter scenes, such as background artifacts, occlusions, and illumination changes. These papers represent the most recent research in this field, including new methods considering still images, image sequences, depth data, stereo vision, 3D vision, audio, and IMUs, among others. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; ISE;MV;;OR;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ |
Serial |
2851 |
|
Permanent link to this record |
|
|
|
|
Author |
Hao Fang; Ajian Liu; Jun Wan; Sergio Escalera; Chenxu Zhao; Xu Zhang; Stan Z Li; Zhen Lei |


|
|
Title |
Surveillance Face Anti-spoofing |
Type |
Journal Article |
|
Year |
2024 |
Publication |
IEEE Transactions on Information Forensics and Security |
Abbreviated Journal |
TIFS |
|
|
Volume |
19 |
Issue |
|
Pages  |
1535-1546 |
|
|
Keywords |
|
|
|
Abstract |
Face Anti-spoofing (FAS) is essential to secure face recognition systems from various physical attacks. However, recent research generally focuses on short-distance applications (i.e., phone unlocking) while lacking consideration of long-distance scenes (i.e., surveillance security checks). In order to promote relevant research and fill this gap in the community, we collect a large-scale Surveillance High-Fidelity Mask (SuHiFiMask) dataset captured under 40 surveillance scenes, which has 101 subjects from different age groups with 232 3D attacks (high-fidelity masks), 200 2D attacks (posters, portraits, and screens), and 2 adversarial attacks. In this scene, low image resolution and noise interference are new challenges faced in surveillance FAS. Together with the SuHiFiMask dataset, we propose a Contrastive Quality-Invariance Learning (CQIL) network to alleviate the performance degradation caused by image quality from three aspects: (1) An Image Quality Variable module (IQV) is introduced to recover image information associated with discrimination by combining the super-resolution network. (2) Using generated sample pairs to simulate quality variance distributions to help contrastive learning strategies obtain robust feature representation under quality variation. (3) A Separate Quality Network (SQN) is designed to learn discriminative features independent of image quality. Finally, a large number of experiments verify the quality of the SuHiFiMask dataset and the superiority of the proposed CQIL. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ FLW2024 |
Serial |
3869 |
|
Permanent link to this record |
|
|
|
|
Author |
Ciprian Corneanu; Marc Oliu; Jeffrey F. Cohn; Sergio Escalera |


|
|
Title |
Survey on RGB, 3D, Thermal, and Multimodal Approaches for Facial Expression Recognition: History |
Type |
Journal Article |
|
Year |
2016 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
28 |
Issue |
8 |
Pages  |
1548-1568 |
|
|
Keywords |
Facial expression; affect; emotion recognition; RGB; 3D; thermal; multimodal |
|
|
Abstract |
Facial expressions are an important way through which humans interact socially. Building a system capable of automatically recognizing facial expressions from images and video has been an intense field of study in recent years. Interpreting such expressions remains challenging and much research is needed about the way they relate to human affect. This paper presents a general overview of automatic RGB, 3D, thermal and multimodal facial expression analysis. We define a new taxonomy for the field, encompassing all steps from face detection to facial expression recognition, and describe and classify the state of the art methods accordingly. We also present the important datasets and the bench-marking of most influential methods. We conclude with a general discussion about trends, important questions and future lines of research. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB; |
Approved |
no |
|
|
Call Number |
Admin @ si @ COC2016 |
Serial |
2718 |
|
Permanent link to this record |
|
|
|
|
Author |
Xavier Otazu; Oriol Pujol |

|
|
Title |
Wavelet based approach to cluster analysis. Application on low dimensional data sets |
Type |
Journal Article |
|
Year |
2006 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
27 |
Issue |
14 |
Pages  |
1590–1605 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB; CIC; HuPBA |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ OtP2006 |
Serial |
658 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Escalera; Xavier Baro; Jordi Vitria; Petia Radeva; Bogdan Raducanu |


|
|
Title |
Social Network Extraction and Analysis Based on Multimodal Dyadic Interaction |
Type |
Journal Article |
|
Year |
2012 |
Publication |
Sensors |
Abbreviated Journal |
SENS |
|
|
Volume |
12 |
Issue |
2 |
Pages  |
1702-1719 |
|
|
Keywords |
|
|
|
Abstract |
IF=1.77 (2010)
Social interactions are a very important component in peopleís lives. Social network analysis has become a common technique used to model and quantify the properties of social interactions. In this paper, we propose an integrated framework to explore the characteristics of a social network extracted from multimodal dyadic interactions. For our study, we used a set of videos belonging to New York Timesí Blogging Heads opinion blog.
The Social Network is represented as an oriented graph, whose directed links are determined by the Influence Model. The linksí weights are a measure of the ìinfluenceî a person has over the other. The states of the Influence Model encode automatically extracted audio/visual features from our videos using state-of-the art algorithms. Our results are reported in terms of accuracy of audio/visual data fusion for speaker segmentation and centrality measures used to characterize the extracted social network. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Molecular Diversity Preservation International |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB; OR;HuPBA;MV |
Approved |
no |
|
|
Call Number |
Admin @ si @ EBV2012 |
Serial |
1885 |
|
Permanent link to this record |