|
Records |
Links |
|
Author |
Sergio Escalera; Oriol Pujol; Petia Radeva |
|
|
Title |
Re-coding ECOCs without retraining |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
31 |
Issue |
7 |
Pages |
555–562 |
|
|
Keywords |
|
|
|
Abstract |
A standard way to deal with multi-class categorization problems is by the combination of binary classifiers in a pairwise voting procedure. Recently, this classical approach has been formalized in the Error-Correcting Output Codes (ECOC) framework. In the ECOC framework, the one-versus-one coding demonstrates to achieve higher performance than the rest of coding designs. The binary problems that we train in the one-versus-one strategy are significantly smaller than in the rest of designs, and usually easier to be learnt, taking into account the smaller overlapping between classes. However, a high percentage of the positions coded by zero of the coding matrix, which implies a high sparseness degree, does not codify meta-class membership information. In this paper, we show that using the training data we can redefine without re-training, in a problem-dependent way, the one-versus-one coding matrix so that the new coded information helps the system to increase its generalization capability. Moreover, the new re-coding strategy is generalized to be applied over any binary code. The results over several UCI Machine Learning repository data sets and two real multi-class problems show that performance improvements can be obtained re-coding the classical one-versus-one and Sparse random designs compared to different state-of-the-art ECOC configurations. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;HUPBA |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ EPR2010e |
Serial |
1338 |
|
Permanent link to this record |
|
|
|
|
Author |
Antonio Hernandez; Nadezhda Zlateva; Alexander Marinov; Miguel Reyes; Petia Radeva; Dimo Dimov; Sergio Escalera |
|
|
Title |
Human Limb Segmentation in Depth Maps based on Spatio-Temporal Graph Cuts Optimization |
Type |
Journal Article |
|
Year |
2012 |
Publication |
Journal of Ambient Intelligence and Smart Environments |
Abbreviated Journal |
JAISE |
|
|
Volume |
4 |
Issue |
6 |
Pages |
535-546 |
|
|
Keywords |
Multi-modal vision processing; Random Forest; Graph-cuts; multi-label segmentation; human body segmentation |
|
|
Abstract |
We present a framework for object segmentation using depth maps based on Random Forest and Graph-cuts theory, and apply it to the segmentation of human limbs. First, from a set of random depth features, Random Forest is used to infer a set of label probabilities for each data sample. This vector of probabilities is used as unary term in α−β swap Graph-cuts algorithm. Moreover, depth values of spatio-temporal neighboring data points are used as boundary potentials. Results on a new multi-label human depth data set show high performance in terms of segmentation overlapping of the novel methodology compared to classical approaches. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1876-1364 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;HuPBA |
Approved |
no |
|
|
Call Number |
Admin @ si @ HZM2012a |
Serial |
2006 |
|
Permanent link to this record |
|
|
|
|
Author |
Thomas B. Moeslund; Sergio Escalera; Gholamreza Anbarjafari; Kamal Nasrollahi; Jun Wan |
|
|
Title |
Statistical Machine Learning for Human Behaviour Analysis |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Entropy |
Abbreviated Journal |
ENTROPY |
|
|
Volume |
25 |
Issue |
5 |
Pages |
530 |
|
|
Keywords |
action recognition; emotion recognition; privacy-aware |
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ MEA2020 |
Serial |
3441 |
|
Permanent link to this record |
|
|
|
|
Author |
Fatemeh Noroozi; Ciprian Corneanu; Dorota Kamińska; Tomasz Sapiński; Sergio Escalera; Gholamreza Anbarjafari |
|
|
Title |
Survey on Emotional Body Gesture Recognition |
Type |
Journal Article |
|
Year |
2021 |
Publication |
IEEE Transactions on Affective Computing |
Abbreviated Journal |
TAC |
|
|
Volume |
12 |
Issue |
2 |
Pages |
505 - 523 |
|
|
Keywords |
|
|
|
Abstract |
Automatic emotion recognition has become a trending research topic in the past decade. While works based on facial expressions or speech abound, recognizing affect from body gestures remains a less explored topic. We present a new comprehensive survey hoping to boost research in the field. We first introduce emotional body gestures as a component of what is commonly known as “body language” and comment general aspects as gender differences and culture dependence. We then define a complete framework for automatic emotional body gesture recognition. We introduce person detection and comment static and dynamic body pose estimation methods both in RGB and 3D. We then comment the recent literature related to representation learning and emotion recognition from images of emotionally expressive gestures. We also discuss multi-modal approaches that combine speech or face with body gestures for improved emotion recognition. While pre-processing methodologies (e.g. human detection and pose estimation) are nowadays mature technologies fully developed for robust large scale analysis, we show that for emotion recognition the quantity of labelled data is scarce, there is no agreement on clearly defined output spaces and the representations are shallow and largely based on naive geometrical representations. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ NCK2021 |
Serial |
3657 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Escalera; Alicia Fornes; Oriol Pujol; Josep Llados; Petia Radeva |
|
|
Title |
Circular Blurred Shape Model for Multiclass Symbol Recognition |
Type |
Journal Article |
|
Year |
2011 |
Publication |
IEEE Transactions on Systems, Man and Cybernetics (Part B) (IEEE) |
Abbreviated Journal |
TSMCB |
|
|
Volume |
41 |
Issue |
2 |
Pages |
497-506 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we propose a circular blurred shape model descriptor to deal with the problem of symbol detection and classification as a particular case of object recognition. The feature extraction is performed by capturing the spatial arrangement of significant object characteristics in a correlogram structure. The shape information from objects is shared among correlogram regions, where a prior blurring degree defines the level of distortion allowed in the symbol, making the descriptor tolerant to irregular deformations. Moreover, the descriptor is rotation invariant by definition. We validate the effectiveness of the proposed descriptor in both the multiclass symbol recognition and symbol detection domains. In order to perform the symbol detection, the descriptors are learned using a cascade of classifiers. In the case of multiclass categorization, the new feature space is learned using a set of binary classifiers which are embedded in an error-correcting output code design. The results over four symbol data sets show the significant improvements of the proposed descriptor compared to the state-of-the-art descriptors. In particular, the results are even more significant in those cases where the symbols suffer from elastic deformations. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1083-4419 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB; DAG;HuPBA |
Approved |
no |
|
|
Call Number |
Admin @ si @ EFP2011 |
Serial |
1784 |
|
Permanent link to this record |