|
Records |
Links |
|
Author |
Hugo Bertiche; Meysam Madadi; Sergio Escalera |
|
|
Title |
PBNS: Physically Based Neural Simulation for Unsupervised Garment Pose Space Deformation |
Type |
Journal Article |
|
Year |
2021 |
Publication |
ACM Transactions on Graphics |
Abbreviated Journal |
|
|
|
Volume |
40 |
Issue |
6 |
Pages |
1-14 |
|
|
Keywords |
|
|
|
Abstract |
We present a methodology to automatically obtain Pose Space Deformation (PSD) basis for rigged garments through deep learning. Classical approaches rely on Physically Based Simulations (PBS) to animate clothes. These are general solutions that, given a sufficiently fine-grained discretization of space and time, can achieve highly realistic results. However, they are computationally expensive and any scene modification prompts the need of re-simulation. Linear Blend Skinning (LBS) with PSD offers a lightweight alternative to PBS, though, it needs huge volumes of data to learn proper PSD. We propose using deep learning, formulated as an implicit PBS, to unsupervisedly learn realistic cloth Pose Space Deformations in a constrained scenario: dressed humans. Furthermore, we show it is possible to train these models in an amount of time comparable to a PBS of a few sequences. To the best of our knowledge, we are the first to propose a neural simulator for cloth.
While deep-based approaches in the domain are becoming a trend, these are data-hungry models. Moreover, authors often propose complex formulations to better learn wrinkles from PBS data. Supervised learning leads to physically inconsistent predictions that require collision solving to be used. Also, dependency on PBS data limits the scalability of these solutions, while their formulation hinders its applicability and compatibility. By proposing an unsupervised methodology to learn PSD for LBS models (3D animation standard), we overcome both of these drawbacks. Results obtained show cloth-consistency in the animated garments and meaningful pose-dependant folds and wrinkles. Our solution is extremely efficient, handles multiple layers of cloth, allows unsupervised outfit resizing and can be easily applied to any custom 3D avatar. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ BME2021c |
Serial |
3643 |
|
Permanent link to this record |
|
|
|
|
Author |
Hugo Jair Escalante; Heysem Kaya; Albert Ali Salah; Sergio Escalera; Yagmur Gucluturk; Umut Guçlu; Xavier Baro; Isabelle Guyon; Julio C. S. Jacques Junior; Meysam Madadi; Stephane Ayache; Evelyne Viegas; Furkan Gurpinar; Achmadnoer Sukma Wicaksana; Cynthia Liem; Marcel A. J. Van Gerven; Rob Van Lier |
|
|
Title |
Modeling, Recognizing, and Explaining Apparent Personality from Videos |
Type |
Journal Article |
|
Year |
2022 |
Publication |
IEEE Transactions on Affective Computing |
Abbreviated Journal |
TAC |
|
|
Volume |
13 |
Issue |
2 |
Pages |
894-911 |
|
|
Keywords |
|
|
|
Abstract |
Explainability and interpretability are two critical aspects of decision support systems. Despite their importance, it is only recently that researchers are starting to explore these aspects. This paper provides an introduction to explainability and interpretability in the context of apparent personality recognition. To the best of our knowledge, this is the first effort in this direction. We describe a challenge we organized on explainability in first impressions analysis from video. We analyze in detail the newly introduced data set, evaluation protocol, proposed solutions and summarize the results of the challenge. We investigate the issue of bias in detail. Finally, derived from our study, we outline research opportunities that we foresee will be relevant in this area in the near future. |
|
|
Address |
1 April-June 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no menciona;MV;OR;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ EKS2022 |
Serial |
3406 |
|
Permanent link to this record |
|
|
|
|
Author |
Hugo Jair Escalante; Victor Ponce; Sergio Escalera; Xavier Baro; Alicia Morales-Reyes; Jose Martinez-Carranza |
|
|
Title |
Evolving weighting schemes for the Bag of Visual Words |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Neural Computing and Applications |
Abbreviated Journal |
Neural Computing and Applications |
|
|
Volume |
28 |
Issue |
5 |
Pages |
925–939 |
|
|
Keywords |
Bag of Visual Words; Bag of features; Genetic programming; Term-weighting schemes; Computer vision |
|
|
Abstract |
The Bag of Visual Words (BoVW) is an established representation in computer vision. Taking inspiration from text mining, this representation has proved
to be very effective in many domains. However, in most cases, standard term-weighting schemes are adopted (e.g.,term-frequency or TF-IDF). It remains open the question of whether alternative weighting schemes could boost the
performance of methods based on BoVW. More importantly, it is unknown whether it is possible to automatically learn and determine effective weighting schemes from
scratch. This paper brings some light into both of these unknowns. On the one hand, we report an evaluation of the most common weighting schemes used in text mining, but rarely used in computer vision tasks. Besides, we propose an evolutionary algorithm capable of automatically learning weighting schemes for computer vision problems. We report empirical results of an extensive study in several computer vision problems. Results show the usefulness of the proposed method. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
Springer |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA;MV; no menciona;OR;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ EPE2017 |
Serial |
2743 |
|
Permanent link to this record |
|
|
|
|
Author |
Ikechukwu Ofodile; Ahmed Helmi; Albert Clapes; Egils Avots; Kerttu Maria Peensoo; Sandhra Mirella Valdma; Andreas Valdmann; Heli Valtna Lukner; Sergey Omelkov; Sergio Escalera; Cagri Ozcinar; Gholamreza Anbarjafari |
|
|
Title |
Action recognition using single-pixel time-of-flight detection |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Entropy |
Abbreviated Journal |
ENTROPY |
|
|
Volume |
21 |
Issue |
4 |
Pages |
414 |
|
|
Keywords |
single pixel single photon image acquisition; time-of-flight; action recognition |
|
|
Abstract |
Action recognition is a challenging task that plays an important role in many robotic systems, which highly depend on visual input feeds. However, due to privacy concerns, it is important to find a method which can recognise actions without using visual feed. In this paper, we propose a concept for detecting actions while preserving the test subject’s privacy. Our proposed method relies only on recording the temporal evolution of light pulses scattered back from the scene.
Such data trace to record one action contains a sequence of one-dimensional arrays of voltage values acquired by a single-pixel detector at 1 GHz repetition rate. Information about both the distance to the object and its shape are embedded in the traces. We apply machine learning in the form of recurrent neural networks for data analysis and demonstrate successful action recognition. The experimental results show that our proposed method could achieve on average 96.47% accuracy on the actions walking forward, walking backwards, sitting down, standing up and waving hand, using recurrent
neural network. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no proj;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ OHC2019 |
Serial |
3319 |
|
Permanent link to this record |
|
|
|
|
Author |
Javier Marin; Sergio Escalera |
|
|
Title |
SSSGAN: Satellite Style and Structure Generative Adversarial Networks |
Type |
Journal Article |
|
Year |
2021 |
Publication |
Remote Sensing |
Abbreviated Journal |
|
|
|
Volume |
13 |
Issue |
19 |
Pages |
3984 |
|
|
Keywords |
|
|
|
Abstract |
This work presents Satellite Style and Structure Generative Adversarial Network (SSGAN), a generative model of high resolution satellite imagery to support image segmentation. Based on spatially adaptive denormalization modules (SPADE) that modulate the activations with respect to segmentation map structure, in addition to global descriptor vectors that capture the semantic information in a vector with respect to Open Street Maps (OSM) classes, this model is able to produce
consistent aerial imagery. By decoupling the generation of aerial images into a structure map and a carefully defined style vector, we were able to improve the realism and geodiversity of the synthesis with respect to the state-of-the-art baseline. Therefore, the proposed model allows us to control the generation not only with respect to the desired structure, but also with respect to a geographic area. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj;MILAB;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ MaE2021 |
Serial |
3651 |
|
Permanent link to this record |