toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Ciprian Corneanu; Marc Oliu; Jeffrey F. Cohn; Sergio Escalera edit   pdf
doi  openurl
  Title Survey on RGB, 3D, Thermal, and Multimodal Approaches for Facial Expression Recognition: History Type Journal Article
  Year 2016 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 28 Issue 8 Pages 1548-1568  
  Keywords Facial expression; affect; emotion recognition; RGB; 3D; thermal; multimodal  
  Abstract (up) Facial expressions are an important way through which humans interact socially. Building a system capable of automatically recognizing facial expressions from images and video has been an intense field of study in recent years. Interpreting such expressions remains challenging and much research is needed about the way they relate to human affect. This paper presents a general overview of automatic RGB, 3D, thermal and multimodal facial expression analysis. We define a new taxonomy for the field, encompassing all steps from face detection to facial expression recognition, and describe and classify the state of the art methods accordingly. We also present the important datasets and the bench-marking of most influential methods. We conclude with a general discussion about trends, important questions and future lines of research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ COC2016 Serial 2718  
Permanent link to this record
 

 
Author Yunan Li; Jun Wan; Qiguang Miao; Sergio Escalera; Huijuan Fang; Huizhou Chen; Xiangda Qi; Guodong Guo edit  url
openurl 
  Title CR-Net: A Deep Classification-Regression Network for Multimodal Apparent Personality Analysis Type Journal Article
  Year 2020 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 128 Issue Pages 2763–2780  
  Keywords  
  Abstract (up) First impressions strongly influence social interactions, having a high impact in the personal and professional life. In this paper, we present a deep Classification-Regression Network (CR-Net) for analyzing the Big Five personality problem and further assisting on job interview recommendation in a first impressions setup. The setup is based on the ChaLearn First Impressions dataset, including multimodal data with video, audio, and text converted from the corresponding audio data, where each person is talking in front of a camera. In order to give a comprehensive prediction, we analyze the videos from both the entire scene (including the person’s motions and background) and the face of the person. Our CR-Net first performs personality trait classification and applies a regression later, which can obtain accurate predictions for both personality traits and interview recommendation. Furthermore, we present a new loss function called Bell Loss to address inaccurate predictions caused by the regression-to-the-mean problem. Extensive experiments on the First Impressions dataset show the effectiveness of our proposed network, outperforming the state-of-the-art.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no menciona Approved no  
  Call Number Admin @ si @ LWM2020 Serial 3413  
Permanent link to this record
 

 
Author Miguel Angel Bautista; Sergio Escalera; Oriol Pujol edit   pdf
doi  openurl
  Title On the Design of an ECOC-Compliant Genetic Algorithm Type Journal Article
  Year 2014 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 47 Issue 2 Pages 865-884  
  Keywords  
  Abstract (up) Genetic Algorithms (GA) have been previously applied to Error-Correcting Output Codes (ECOC) in state-of-the-art works in order to find a suitable coding matrix. Nevertheless, none of the presented techniques directly take into account the properties of the ECOC matrix. As a result the considered search space is unnecessarily large. In this paper, a novel Genetic strategy to optimize the ECOC coding step is presented. This novel strategy redefines the usual crossover and mutation operators in order to take into account the theoretical properties of the ECOC framework. Thus, it reduces the search space and lets the algorithm to converge faster. In addition, a novel operator that is able to enlarge the code in a smart way is introduced. The novel methodology is tested on several UCI datasets and four challenging computer vision problems. Furthermore, the analysis of the results done in terms of performance, code length and number of Support Vectors shows that the optimization process is able to find very efficient codes, in terms of the trade-off between classification performance and the number of classifiers. Finally, classification performance per dichotomizer results shows that the novel proposal is able to obtain similar or even better results while defining a more compact number of dichotomies and SVs compared to state-of-the-art approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ BEP2013 Serial 2254  
Permanent link to this record
 

 
Author Razieh Rastgoo; Kourosh Kiani; Sergio Escalera edit  url
openurl 
  Title ZS-GR: zero-shot gesture recognition from RGB-D videos Type Journal Article
  Year 2023 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume 82 Issue Pages 43781-43796  
  Keywords  
  Abstract (up) Gesture Recognition (GR) is a challenging research area in computer vision. To tackle the annotation bottleneck in GR, we formulate the problem of Zero-Shot Gesture Recognition (ZS-GR) and propose a two-stream model from two input modalities: RGB and Depth videos. To benefit from the vision Transformer capabilities, we use two vision Transformer models, for human detection and visual features representation. We configure a transformer encoder-decoder architecture, as a fast and accurate human detection model, to overcome the challenges of the current human detection models. Considering the human keypoints, the detected human body is segmented into nine parts. A spatio-temporal representation from human body is obtained using a vision Transformer and a LSTM network. A semantic space maps the visual features to the lingual embedding of the class labels via a Bidirectional Encoder Representations from Transformers (BERT) model. We evaluated the proposed model on five datasets, Montalbano II, MSR Daily Activity 3D, CAD-60, NTU-60, and isoGD obtaining state-of-the-art results compared to state-of-the-art ZS-GR models as well as the Zero-Shot Action Recognition (ZS-AR).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ RKE2023a Serial 3879  
Permanent link to this record
 

 
Author Reza Azad; Maryam Asadi-Aghbolaghi; Shohreh Kasaei; Sergio Escalera edit  doi
openurl 
  Title Dynamic 3D Hand Gesture Recognition by Learning Weighted Depth Motion Maps Type Journal Article
  Year 2019 Publication IEEE Transactions on Circuits and Systems for Video Technology Abbreviated Journal TCSVT  
  Volume 29 Issue 6 Pages 1729-1740  
  Keywords Hand gesture recognition; Multilevel temporal sampling; Weighted depth motion map; Spatio-temporal description; VLAD encoding  
  Abstract (up) Hand gesture recognition from sequences of depth maps is a challenging computer vision task because of the low inter-class and high intra-class variability, different execution rates of each gesture, and the high articulated nature of human hand. In this paper, a multilevel temporal sampling (MTS) method is first proposed that is based on the motion energy of key-frames of depth sequences. As a result, long, middle, and short sequences are generated that contain the relevant gesture information. The MTS results in increasing the intra-class similarity while raising the inter-class dissimilarities. The weighted depth motion map (WDMM) is then proposed to extract the spatio-temporal information from generated summarized sequences by an accumulated weighted absolute difference of consecutive frames. The histogram of gradient (HOG) and local binary pattern (LBP) are exploited to extract features from WDMM. The obtained results define the current state-of-the-art on three public benchmark datasets of: MSR Gesture 3D, SKIG, and MSR Action 3D, for 3D hand gesture recognition. We also achieve competitive results on NTU action dataset.  
  Address June 2019,  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ AAK2018 Serial 3213  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: