toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Miguel Reyes; Albert Clapes; Jose Ramirez; Juan R Revilla; Sergio Escalera edit   pdf
url  doi
openurl 
  Title Automatic Digital Biometry Analysis based on Depth Maps Type Journal Article
  Year 2013 Publication Computers in Industry Abbreviated Journal COMPUTIND  
  Volume 64 Issue 9 Pages 1316-1325  
  Keywords Multi-modal data fusion; Depth maps; Posture analysis; Anthropometric data; Musculo-skeletal disorders; Gesture analysis  
  Abstract World Health Organization estimates that 80% of the world population is affected by back-related disorders during his life. Current practices to analyze musculo-skeletal disorders (MSDs) are expensive, subjective, and invasive. In this work, we propose a tool for static body posture analysis and dynamic range of movement estimation of the skeleton joints based on 3D anthropometric information from multi-modal data. Given a set of keypoints, RGB and depth data are aligned, depth surface is reconstructed, keypoints are matched, and accurate measurements about posture and spinal curvature are computed. Given a set of joints, range of movement measurements is also obtained. Moreover, gesture recognition based on joint movements is performed to look for the correctness in the development of physical exercises. The system shows high precision and reliable measurements, being useful for posture reeducation purposes to prevent MSDs, as well as tracking the posture evolution of patients in rehabilitation treatments.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ RCR2013 Serial 2252  
Permanent link to this record
 

 
Author Eloi Puertas; Sergio Escalera; Oriol Pujol edit   pdf
url  doi
openurl 
  Title Generalized Multi-scale Stacked Sequential Learning for Multi-class Classification Type Journal Article
  Year 2015 Publication Pattern Analysis and Applications Abbreviated Journal PAA  
  Volume 18 Issue 2 Pages 247-261  
  Keywords Stacked sequential learning; Multi-scale; Error-correct output codes (ECOC); Contextual classification  
  Abstract In many classification problems, neighbor data labels have inherent sequential relationships. Sequential learning algorithms take benefit of these relationships in order to improve generalization. In this paper, we revise the multi-scale sequential learning approach (MSSL) for applying it in the multi-class case (MMSSL). We introduce the error-correcting output codesframework in the MSSL classifiers and propose a formulation for calculating confidence maps from the margins of the base classifiers. In addition, we propose a MMSSL compression approach which reduces the number of features in the extended data set without a loss in performance. The proposed methods are tested on several databases, showing significant performance improvement compared to classical approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 1433-7541 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ PEP2013 Serial 2251  
Permanent link to this record
 

 
Author Albert Clapes; Miguel Reyes; Sergio Escalera edit   pdf
url  doi
openurl 
  Title Multi-modal User Identification and Object Recognition Surveillance System Type Journal Article
  Year 2013 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 34 Issue 7 Pages 799-808  
  Keywords Multi-modal RGB-Depth data analysis; User identification; Object recognition; Intelligent surveillance; Visual features; Statistical learning  
  Abstract We propose an automatic surveillance system for user identification and object recognition based on multi-modal RGB-Depth data analysis. We model a RGBD environment learning a pixel-based background Gaussian distribution. Then, user and object candidate regions are detected and recognized using robust statistical approaches. The system robustly recognizes users and updates the system in an online way, identifying and detecting new actors in the scene. Moreover, segmented objects are described, matched, recognized, and updated online using view-point 3D descriptions, being robust to partial occlusions and local 3D viewpoint rotations. Finally, the system saves the historic of user–object assignments, being specially useful for surveillance scenarios. The system has been evaluated on a novel data set containing different indoor/outdoor scenarios, objects, and users, showing accurate recognition and better performance than standard state-of-the-art approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; 600.046; 605.203;MILAB Approved no  
  Call Number Admin @ si @ CRE2013 Serial 2248  
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera edit  url
doi  openurl
  Title A Genetic-based Subspace Analysis Method for Improving Error-Correcting Output Coding Type Journal Article
  Year 2013 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 46 Issue 10 Pages 2830-2839  
  Keywords Error Correcting Output Codes; Evolutionary computation; Multiclass classification; Feature subspace; Ensemble classification  
  Abstract Two key factors affecting the performance of Error Correcting Output Codes (ECOC) in multiclass classification problems are the independence of binary classifiers and the problem-dependent coding design. In this paper, we propose an evolutionary algorithm-based approach to the design of an application-dependent codematrix in the ECOC framework. The central idea of this work is to design a three-dimensional codematrix, where the third dimension is the feature space of the problem domain. In order to do that, we consider the feature space in the design process of the codematrix with the aim of improving the independence and accuracy of binary classifiers. The proposed method takes advantage of some basic concepts of ensemble classification, such as diversity of classifiers, and also benefits from the evolutionary approach for optimizing the three-dimensional codematrix, taking into account the problem domain. We provide a set of experimental results using a set of benchmark datasets from the UCI Machine Learning Repository, as well as two real multiclass Computer Vision problems. Both sets of experiments are conducted using two different base learners: Neural Networks and Decision Trees. The results show that the proposed method increases the classification accuracy in comparison with the state-of-the-art ECOC coding techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ BGE2013a Serial 2247  
Permanent link to this record
 

 
Author Simone Balocco; Carlo Gatta; Francesco Ciompi; A. Wahle; Petia Radeva; S. Carlier; G. Unal; E. Sanidas; J. Mauri; X. Carillo; T. Kovarnik; C. Wang; H. Chen; T. P. Exarchos; D. I. Fotiadis; F. Destrempes; G. Cloutier; Oriol Pujol; Marina Alberti; E. G. Mendizabal-Ruiz; M. Rivera; T. Aksoy; R. W. Downe; I. A. Kakadiaris edit   pdf
doi  openurl
  Title Standardized evaluation methodology and reference database for evaluating IVUS image segmentation Type Journal Article
  Year 2014 Publication Computerized Medical Imaging and Graphics Abbreviated Journal CMIG  
  Volume 38 Issue 2 Pages 70-90  
  Keywords IVUS (intravascular ultrasound); Evaluation framework; Algorithm comparison; Image segmentation  
  Abstract This paper describes an evaluation framework that allows a standardized and quantitative comparison of IVUS lumen and media segmentation algorithms. This framework has been introduced at the MICCAI 2011 Computing and Visualization for (Intra)Vascular Imaging (CVII) workshop, comparing the results of eight teams that participated.
We describe the available data-base comprising of multi-center, multi-vendor and multi-frequency IVUS datasets, their acquisition, the creation of the reference standard and the evaluation measures. The approaches address segmentation of the lumen, the media, or both borders; semi- or fully-automatic operation; and 2-D vs. 3-D methodology. Three performance measures for quantitative analysis have
been proposed. The results of the evaluation indicate that segmentation of the vessel lumen and media is possible with an accuracy that is comparable to manual annotation when semi-automatic methods are used, as well as encouraging results can be obtained also in case of fully-automatic segmentation. The analysis performed in this paper also highlights the challenges in IVUS segmentation that remains to be
solved.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; LAMP; HuPBA; 600.046; 600.063; 600.079 Approved no  
  Call Number Admin @ si @ BGC2013 Serial 2314  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: