|
Records |
Links |
|
Author |
Hugo Bertiche; Meysam Madadi; Sergio Escalera |
|
|
Title |
PBNS: Physically Based Neural Simulation for Unsupervised Garment Pose Space Deformation |
Type |
Journal Article |
|
Year |
2021 |
Publication |
ACM Transactions on Graphics |
Abbreviated Journal |
|
|
|
Volume |
40 |
Issue |
6 |
Pages |
1-14 |
|
|
Keywords |
|
|
|
Abstract |
We present a methodology to automatically obtain Pose Space Deformation (PSD) basis for rigged garments through deep learning. Classical approaches rely on Physically Based Simulations (PBS) to animate clothes. These are general solutions that, given a sufficiently fine-grained discretization of space and time, can achieve highly realistic results. However, they are computationally expensive and any scene modification prompts the need of re-simulation. Linear Blend Skinning (LBS) with PSD offers a lightweight alternative to PBS, though, it needs huge volumes of data to learn proper PSD. We propose using deep learning, formulated as an implicit PBS, to unsupervisedly learn realistic cloth Pose Space Deformations in a constrained scenario: dressed humans. Furthermore, we show it is possible to train these models in an amount of time comparable to a PBS of a few sequences. To the best of our knowledge, we are the first to propose a neural simulator for cloth.
While deep-based approaches in the domain are becoming a trend, these are data-hungry models. Moreover, authors often propose complex formulations to better learn wrinkles from PBS data. Supervised learning leads to physically inconsistent predictions that require collision solving to be used. Also, dependency on PBS data limits the scalability of these solutions, while their formulation hinders its applicability and compatibility. By proposing an unsupervised methodology to learn PSD for LBS models (3D animation standard), we overcome both of these drawbacks. Results obtained show cloth-consistency in the animated garments and meaningful pose-dependant folds and wrinkles. Our solution is extremely efficient, handles multiple layers of cloth, allows unsupervised outfit resizing and can be easily applied to any custom 3D avatar. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ BME2021c |
Serial |
3643 |
|
Permanent link to this record |
|
|
|
|
Author |
Clementine Decamps; Alexis Arnaud; Florent Petitprez; Mira Ayadi; Aurelia Baures; Lucile Armenoult; Sergio Escalera; Isabelle Guyon; Remy Nicolle; Richard Tomasini; Aurelien de Reynies; Jerome Cros; Yuna Blum; Magali Richard |
|
|
Title |
DECONbench: a benchmarking platform dedicated to deconvolution methods for tumor heterogeneity quantification |
Type |
Journal Article |
|
Year |
2021 |
Publication |
BMC Bioinformatics |
Abbreviated Journal |
|
|
|
Volume |
22 |
Issue |
|
Pages |
473 |
|
|
Keywords |
|
|
|
Abstract |
Quantification of tumor heterogeneity is essential to better understand cancer progression and to adapt therapeutic treatments to patient specificities. Bioinformatic tools to assess the different cell populations from single-omic datasets as bulk transcriptome or methylome samples have been recently developed, including reference-based and reference-free methods. Improved methods using multi-omic datasets are yet to be developed in the future and the community would need systematic tools to perform a comparative evaluation of these algorithms on controlled data. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ DAP2021 |
Serial |
3650 |
|
Permanent link to this record |
|
|
|
|
Author |
Javier Marin; Sergio Escalera |
|
|
Title |
SSSGAN: Satellite Style and Structure Generative Adversarial Networks |
Type |
Journal Article |
|
Year |
2021 |
Publication |
Remote Sensing |
Abbreviated Journal |
|
|
|
Volume |
13 |
Issue |
19 |
Pages |
3984 |
|
|
Keywords |
|
|
|
Abstract |
This work presents Satellite Style and Structure Generative Adversarial Network (SSGAN), a generative model of high resolution satellite imagery to support image segmentation. Based on spatially adaptive denormalization modules (SPADE) that modulate the activations with respect to segmentation map structure, in addition to global descriptor vectors that capture the semantic information in a vector with respect to Open Street Maps (OSM) classes, this model is able to produce
consistent aerial imagery. By decoupling the generation of aerial images into a structure map and a carefully defined style vector, we were able to improve the realism and geodiversity of the synthesis with respect to the state-of-the-art baseline. Therefore, the proposed model allows us to control the generation not only with respect to the desired structure, but also with respect to a geographic area. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ MaE2021 |
Serial |
3651 |
|
Permanent link to this record |
|
|
|
|
Author |
Razieh Rastgoo; Kourosh Kiani; Sergio Escalera |
|
|
Title |
Real-time Isolated Hand Sign Language RecognitioN Using Deep Networks and SVD |
Type |
Journal |
|
Year |
2022 |
Publication |
Journal of Ambient Intelligence and Humanized Computing |
Abbreviated Journal |
|
|
|
Volume |
13 |
Issue |
|
Pages |
591–611 |
|
|
Keywords |
|
|
|
Abstract |
One of the challenges in computer vision models, especially sign language, is real-time recognition. In this work, we present a simple yet low-complex and efficient model, comprising single shot detector, 2D convolutional neural network, singular value decomposition (SVD), and long short term memory, to real-time isolated hand sign language recognition (IHSLR) from RGB video. We employ the SVD method as an efficient, compact, and discriminative feature extractor from the estimated 3D hand keypoints coordinators. Despite the previous works that employ the estimated 3D hand keypoints coordinates as raw features, we propose a novel and revolutionary way to apply the SVD to the estimated 3D hand keypoints coordinates to get more discriminative features. SVD method is also applied to the geometric relations between the consecutive segments of each finger in each hand and also the angles between these sections. We perform a detailed analysis of recognition time and accuracy. One of our contributions is that this is the first time that the SVD method is applied to the hand pose parameters. Results on four datasets, RKS-PERSIANSIGN (99.5±0.04), First-Person (91±0.06), ASVID (93±0.05), and isoGD (86.1±0.04), confirm the efficiency of our method in both accuracy (mean+std) and time recognition. Furthermore, our model outperforms or gets competitive results with the state-of-the-art alternatives in IHSLR and hand action recognition. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ RKE2022a |
Serial |
3660 |
|
Permanent link to this record |
|
|
|
|
Author |
Wenlong Deng; Yongli Mou; Takahiro Kashiwa; Sergio Escalera; Kohei Nagai; Kotaro Nakayama; Yutaka Matsuo; Helmut Prendinger |
|
|
Title |
Vision based Pixel-level Bridge Structural Damage Detection Using a Link ASPP Network |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Automation in Construction |
Abbreviated Journal |
AC |
|
|
Volume |
110 |
Issue |
|
Pages |
102973 |
|
|
Keywords |
Semantic image segmentation; Deep learning |
|
|
Abstract |
Structural Health Monitoring (SHM) has greatly benefited from computer vision. Recently, deep learning approaches are widely used to accurately estimate the state of deterioration of infrastructure. In this work, we focus on the problem of bridge surface structural damage detection, such as delamination and rebar exposure. It is well known that the quality of a deep learning model is highly dependent on the quality of the training dataset. Bridge damage detection, our application domain, has the following main challenges: (i) labeling the damages requires knowledgeable civil engineering professionals, which makes it difficult to collect a large annotated dataset; (ii) the damage area could be very small, whereas the background area is large, which creates an unbalanced training environment; (iii) due to the difficulty to exactly determine the extension of the damage, there is often a variation among different labelers who perform pixel-wise labeling. In this paper, we propose a novel model for bridge structural damage detection to address the first two challenges. This paper follows the idea of an atrous spatial pyramid pooling (ASPP) module that is designed as a novel network for bridge damage detection. Further, we introduce the weight balanced Intersection over Union (IoU) loss function to achieve accurate segmentation on a highly unbalanced small dataset. The experimental results show that (i) the IoU loss function improves the overall performance of damage detection, as compared to cross entropy loss or focal loss, and (ii) the proposed model has a better ability to detect a minority class than other light segmentation networks. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ DMK2020 |
Serial |
3314 |
|
Permanent link to this record |