toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Dena Bazazian; Raul Gomez; Anguelos Nicolaou; Lluis Gomez; Dimosthenis Karatzas; Andrew Bagdanov edit   pdf
openurl 
  Title Improving Text Proposals for Scene Images with Fully Convolutional Networks Type Conference Article
  Year (up) 2016 Publication 23rd International Conference on Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Text Proposals have emerged as a class-dependent version of object proposals – efficient approaches to reduce the search space of possible text object locations in an image. Combined with strong word classifiers, text proposals currently yield top state of the art results in end-to-end scene text
recognition. In this paper we propose an improvement over the original Text Proposals algorithm of [1], combining it with Fully Convolutional Networks to improve the ranking of proposals. Results on the ICDAR RRC and the COCO-text datasets show superior performance over current state-of-the-art.
 
  Address Cancun; Mexico; December 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPRW  
  Notes DAG; LAMP; 600.084 Approved no  
  Call Number Admin @ si @ BGN2016 Serial 2823  
Permanent link to this record
 

 
Author Francisco Cruz edit  isbn
openurl 
  Title Probabilistic Graphical Models for Document Analysis Type Book Whole
  Year (up) 2016 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Latest advances in digitization techniques have fostered the interest in creating digital copies of collections of documents. Digitized documents permit an easy maintenance, loss-less storage, and efficient ways for transmission and to perform information retrieval processes. This situation has opened a new market niche to develop systems able to automatically extract and analyze information contained in these collections, specially in the ambit of the business activity.

Due to the great variety of types of documents this is not a trivial task. For instance, the automatic extraction of numerical data from invoices differs substantially from a task of text recognition in historical documents. However, in order to extract the information of interest, is always necessary to identify the area of the document where it is located. In the area of Document Analysis we refer to this process as layout analysis, which aims at identifying and categorizing the different entities that compose the document, such as text regions, pictures, text lines, or tables, among others. To perform this task it is usually necessary to incorporate a prior knowledge about the task into the analysis process, which can be modeled by defining a set of contextual relations between the different entities of the document. The use of context has proven to be useful to reinforce the recognition process and improve the results on many computer vision tasks. It presents two fundamental questions: What kind of contextual information is appropriate for a given task, and how to incorporate this information into the models.

In this thesis we study several ways to incorporate contextual information to the task of document layout analysis, and to the particular case of handwritten text line segmentation. We focus on the study of Probabilistic Graphical Models and other mechanisms for this purpose, and propose several solutions to these problems. First, we present a method for layout analysis based on Conditional Random Fields. With this model we encode local contextual relations between variables, such as pair-wise constraints. Besides, we encode a set of structural relations between different classes of regions at feature level. Second, we present a method based on 2D-Probabilistic Context-free Grammars to encode structural and hierarchical relations. We perform a comparative study between Probabilistic Graphical Models and this syntactic approach. Third, we propose a method for structured documents based on Bayesian Networks to represent the document structure, and an algorithm based in the Expectation-Maximization to find the best configuration of the page. We perform a thorough evaluation of the proposed methods on two particular collections of documents: a historical collection composed of ancient structured documents, and a collection of contemporary documents. In addition, we present a general method for the task of handwritten text line segmentation. We define a probabilistic framework where we combine the EM algorithm with variational approaches for computing inference and parameter learning on a Markov Random Field. We evaluate our method on several collections of documents, including a general dataset of annotated administrative documents. Results demonstrate the applicability of our method to real problems, and the contribution of the use of contextual information to this kind of problems.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Oriol Ramos Terrades  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-945373-2-5 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ Cru2016 Serial 2861  
Permanent link to this record
 

 
Author Lluis Gomez; Dimosthenis Karatzas edit   pdf
url  openurl
  Title A fast hierarchical method for multi‐script and arbitrary oriented scene text extraction Type Journal Article
  Year (up) 2016 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 19 Issue 4 Pages 335-349  
  Keywords scene text; segmentation; detection; hierarchical grouping; perceptual organisation  
  Abstract Typography and layout lead to the hierarchical organisation of text in words, text lines, paragraphs. This inherent structure is a key property of text in any script and language, which has nonetheless been minimally leveraged by existing text detection methods. This paper addresses the problem of text
segmentation in natural scenes from a hierarchical perspective.
Contrary to existing methods, we make explicit use of text structure, aiming directly to the detection of region groupings corresponding to text within a hierarchy produced by an agglomerative similarity clustering process over individual regions. We propose an optimal way to construct such an hierarchy introducing a feature space designed to produce text group hypotheses with
high recall and a novel stopping rule combining a discriminative classifier and a probabilistic measure of group meaningfulness based in perceptual organization. Results obtained over four standard datasets, covering text in variable orientations and different languages, demonstrate that our algorithm, while being trained in a single mixed dataset, outperforms state of the art
methods in unconstrained scenarios.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.056; 601.197 Approved no  
  Call Number Admin @ si @ GoK2016a Serial 2862  
Permanent link to this record
 

 
Author Lluis Gomez; Dimosthenis Karatzas edit   pdf
doi  openurl
  Title A fine-grained approach to scene text script identification Type Conference Article
  Year (up) 2016 Publication 12th IAPR Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue Pages 192-197  
  Keywords  
  Abstract This paper focuses on the problem of script identification in unconstrained scenarios. Script identification is an important prerequisite to recognition, and an indispensable condition for automatic text understanding systems designed for multi-language environments. Although widely studied for document images and handwritten documents, it remains an almost unexplored territory for scene text images. We detail a novel method for script identification in natural images that combines convolutional features and the Naive-Bayes Nearest Neighbor classifier. The proposed framework efficiently exploits the discriminative power of small stroke-parts, in a fine-grained classification framework. In addition, we propose a new public benchmark dataset for the evaluation of joint text detection and script identification in natural scenes. Experiments done in this new dataset demonstrate that the proposed method yields state of the art results, while it generalizes well to different datasets and variable number of scripts. The evidence provided shows that multi-lingual scene text recognition in the wild is a viable proposition. Source code of the proposed method is made available online.  
  Address Santorini; Grecia; April 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 601.197; 600.084 Approved no  
  Call Number Admin @ si @ GoK2016b Serial 2863  
Permanent link to this record
 

 
Author Youssef El Rhabi; Simon Loic; Brun Luc; Josep Llados; Felipe Lumbreras edit  doi
openurl 
  Title Information Theoretic Rotationwise Robust Binary Descriptor Learning Type Conference Article
  Year (up) 2016 Publication Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR) Abbreviated Journal  
  Volume Issue Pages 368-378  
  Keywords  
  Abstract In this paper, we propose a new data-driven approach for binary descriptor selection. In order to draw a clear analysis of common designs, we present a general information-theoretic selection paradigm. It encompasses several standard binary descriptor construction schemes, including a recent state-of-the-art one named BOLD. We pursue the same endeavor to increase the stability of the produced descriptors with respect to rotations. To achieve this goal, we have designed a novel offline selection criterion which is better adapted to the online matching procedure. The effectiveness of our approach is demonstrated on two standard datasets, where our descriptor is compared to BOLD and to several classical descriptors. In particular, it emerges that our approach can reproduce equivalent if not better performance as BOLD while relying on twice shorter descriptors. Such an improvement can be influential for real-time applications.  
  Address Mérida; Mexico; November 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference S+SSPR  
  Notes DAG; ADAS; 600.097; 600.086 Approved no  
  Call Number Admin @ si @ RLL2016 Serial 2871  
Permanent link to this record
 

 
Author Anjan Dutta; Umapada Pal; Josep Llados edit  url
openurl 
  Title Compact Correlated Features for Writer Independent Signature Verification Type Conference Article
  Year (up) 2016 Publication 23rd International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This paper considers the offline signature verification problem which is considered to be an important research line in the field of pattern recognition. In this work we propose hybrid features that consider the local features and their global statistics in the signature image. This has been done by creating a vocabulary of histogram of oriented gradients (HOGs). We impose weights on these local features based on the height information of water reservoirs obtained from the signature. Spatial information between local features are thought to play a vital role in considering the geometry of the signatures which distinguishes the originals from the forged ones. Nevertheless, learning a condensed set of higher order neighbouring features based on visual words, e.g., doublets and triplets, continues to be a challenging problem as possible combinations of visual words grow exponentially. To avoid this explosion of size, we create a code of local pairwise features which are represented as joint descriptors. Local features are paired based on the edges of a graph representation built upon the Delaunay triangulation. We reveal the advantage of combining both type of visual codebooks (order one and pairwise) for signature verification task. This is validated through an encouraging result on two benchmark datasets viz. CEDAR and GPDS300.  
  Address Cancun; Mexico; December 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 600.097 Approved no  
  Call Number Admin @ si @ DPL2016 Serial 2875  
Permanent link to this record
 

 
Author Sounak Dey; Anguelos Nicolaou; Josep Llados; Umapada Pal edit   pdf
doi  openurl
  Title Local Binary Pattern for Word Spotting in Handwritten Historical Document Type Conference Article
  Year (up) 2016 Publication Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR) Abbreviated Journal  
  Volume Issue Pages 574-583  
  Keywords Local binary patterns; Spatial sampling; Learning-free; Word spotting; Handwritten; Historical document analysis; Large-scale data  
  Abstract Digital libraries store images which can be highly degraded and to index this kind of images we resort to word spotting as our information retrieval system. Information retrieval for handwritten document images is more challenging due to the difficulties in complex layout analysis, large variations of writing styles, and degradation or low quality of historical manuscripts. This paper presents a simple innovative learning-free method for word spotting from large scale historical documents combining Local Binary Pattern (LBP) and spatial sampling. This method offers three advantages: firstly, it operates in completely learning free paradigm which is very different from unsupervised learning methods, secondly, the computational time is significantly low because of the LBP features, which are very fast to compute, and thirdly, the method can be used in scenarios where annotations are not available. Finally, we compare the results of our proposed retrieval method with other methods in the literature and we obtain the best results in the learning free paradigm.  
  Address Merida; Mexico; December 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference S+SSPR  
  Notes DAG; 600.097; 602.006; 603.053 Approved no  
  Call Number Admin @ si @ DNL2016 Serial 2876  
Permanent link to this record
 

 
Author Juan Ignacio Toledo; Sebastian Sudholt; Alicia Fornes; Jordi Cucurull; A. Fink; Josep Llados edit   pdf
url  isbn
openurl 
  Title Handwritten Word Image Categorization with Convolutional Neural Networks and Spatial Pyramid Pooling Type Conference Article
  Year (up) 2016 Publication Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR) Abbreviated Journal  
  Volume 10029 Issue Pages 543-552  
  Keywords Document image analysis; Word image categorization; Convolutional neural networks; Named entity detection  
  Abstract The extraction of relevant information from historical document collections is one of the key steps in order to make these documents available for access and searches. The usual approach combines transcription and grammars in order to extract semantically meaningful entities. In this paper, we describe a new method to obtain word categories directly from non-preprocessed handwritten word images. The method can be used to directly extract information, being an alternative to the transcription. Thus it can be used as a first step in any kind of syntactical analysis. The approach is based on Convolutional Neural Networks with a Spatial Pyramid Pooling layer to deal with the different shapes of the input images. We performed the experiments on a historical marriage record dataset, obtaining promising results.  
  Address Merida; Mexico; December 2016  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-319-49054-0 Medium  
  Area Expedition Conference S+SSPR  
  Notes DAG; 600.097; 602.006 Approved no  
  Call Number Admin @ si @ TSF2016 Serial 2877  
Permanent link to this record
 

 
Author Albert Berenguel; Oriol Ramos Terrades; Josep Llados; Cristina Cañero edit  doi
openurl 
  Title Banknote counterfeit detection through background texture printing analysis Type Conference Article
  Year (up) 2016 Publication 12th IAPR Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This paper is focused on the detection of counterfeit photocopy banknotes. The main difficulty is to work on a real industrial scenario without any constraint about the acquisition device and with a single image. The main contributions of this paper are twofold: first the adaptation and performance evaluation of existing approaches to classify the genuine and photocopy banknotes using background texture printing analysis, which have not been applied into this context before. Second, a new dataset of Euro banknotes images acquired with several cameras under different luminance conditions to evaluate these methods. Experiments on the proposed algorithms show that mixing SIFT features and sparse coding dictionaries achieves quasi perfect classification using a linear SVM with the created dataset. Approaches using dictionaries to cover all possible texture variations have demonstrated to be robust and outperform the state-of-the-art methods using the proposed benchmark.  
  Address Rumania; May 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 600.061; 601.269; 600.097 Approved no  
  Call Number Admin @ si @ BRL2016 Serial 2950  
Permanent link to this record
 

 
Author Marc Sunset Perez; Marc Comino Trinidad; Dimosthenis Karatzas; Antonio Chica Calaf; Pere Pau Vazquez Alcocer edit  url
openurl 
  Title Development of general‐purpose projection‐based augmented reality systems Type Journal
  Year (up) 2016 Publication IADIs international journal on computer science and information systems Abbreviated Journal IADIs  
  Volume 11 Issue 2 Pages 1-18  
  Keywords  
  Abstract Despite the large amount of methods and applications of augmented reality, there is little homogenizatio n on the software platforms that support them. An exception may be the low level control software that is provided by some high profile vendors such as Qualcomm and Metaio. However, these provide fine grain modules for e.g. element tracking. We are more co ncerned on the application framework, that includes the control of the devices working together for the development of the AR experience. In this paper we describe the development of a software framework for AR setups. We concentrate on the modular design of the framework, but also on some hard problems such as the calibration stage, crucial for projection – based AR. The developed framework is suitable and has been tested in AR applications using camera – projector pairs, for both fixed and nomadic setups  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.084 Approved no  
  Call Number Admin @ si @ SCK2016 Serial 2890  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: