toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Albert Gordo edit  openurl
  Title Document Image Representation, Classification and Retrieval in Large-Scale Domains Type Book Whole
  Year (up) 2013 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Despite the “paperless office” ideal that started in the decade of the seventies, businesses still strive against an increasing amount of paper documentation. Companies still receive huge amounts of paper documentation that need to be analyzed and processed, mostly in a manual way. A solution for this task consists in, first, automatically scanning the incoming documents. Then, document images can be analyzed and information can be extracted from the data. Documents can also be automatically dispatched to the appropriate workflows, used to retrieve similar documents in the dataset to transfer information, etc.

Due to the nature of this “digital mailroom”, we need document representation methods to be general, i.e., able to cope with very different types of documents. We need the methods to be sound, i.e., able to cope with unexpected types of documents, noise, etc. And, we need to methods to be scalable, i.e., able to cope with thousands or millions of documents that need to be processed, stored, and consulted. Unfortunately, current techniques of document representation, classification and retrieval are not apt for this digital mailroom framework, since they do not fulfill some or all of these requirements.

Through this thesis we focus on the problem of document representation aimed at classification and retrieval tasks under this digital mailroom framework. We first propose a novel document representation based on runlength histograms, and extend it to cope with more complex documents such as multiple-page documents, or documents that contain more sources of information such as extracted OCR text. Then we focus on the scalability requirements and propose a novel binarization method which we dubbed PCAE, as well as two general asymmetric distances between binary embeddings that can significantly improve the retrieval results at a minimal extra computational cost. Finally, we note the importance of supervised learning when performing large-scale retrieval, and study several approaches that can significantly boost the results at no extra cost at query time.
 
  Address Barcelona  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Ernest Valveny;Florent Perronnin  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ Gor2013 Serial 2277  
Permanent link to this record
 

 
Author Muhammad Muzzamil Luqman; Jean-Yves Ramel; Josep Llados edit  url
doi  isbn
openurl 
  Title Multilevel Analysis of Attributed Graphs for Explicit Graph Embedding in Vector Spaces Type Book Chapter
  Year (up) 2013 Publication Graph Embedding for Pattern Analysis Abbreviated Journal  
  Volume Issue Pages 1-26  
  Keywords  
  Abstract Ability to recognize patterns is among the most crucial capabilities of human beings for their survival, which enables them to employ their sophisticated neural and cognitive systems [1], for processing complex audio, visual, smell, touch, and taste signals. Man is the most complex and the best existing system of pattern recognition. Without any explicit thinking, we continuously compare, classify, and identify huge amount of signal data everyday [2], starting from the time we get up in the morning till the last second we fall asleep. This includes recognizing the face of a friend in a crowd, a spoken word embedded in noise, the proper key to lock the door, smell of coffee, the voice of a favorite singer, the recognition of alphabetic characters, and millions of more tasks that we perform on regular basis.  
  Address  
  Corporate Author Thesis  
  Publisher Springer New York Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4614-4456-5 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ LRL2013b Serial 2271  
Permanent link to this record
 

 
Author Rahat Khan; Joost Van de Weijer; Dimosthenis Karatzas; Damien Muselet edit   pdf
doi  openurl
  Title Towards multispectral data acquisition with hand-held devices Type Conference Article
  Year (up) 2013 Publication 20th IEEE International Conference on Image Processing Abbreviated Journal  
  Volume Issue Pages 2053 - 2057  
  Keywords Multispectral; mobile devices; color measurements  
  Abstract We propose a method to acquire multispectral data with handheld devices with front-mounted RGB cameras. We propose to use the display of the device as an illuminant while the camera captures images illuminated by the red, green and
blue primaries of the display. Three illuminants and three response functions of the camera lead to nine response values which are used for reflectance estimation. Results are promising and show that the accuracy of the spectral reconstruction improves in the range from 30-40% over the spectral
reconstruction based on a single illuminant. Furthermore, we propose to compute sensor-illuminant aware linear basis by discarding the part of the reflectances that falls in the sensorilluminant null-space. We show experimentally that optimizing reflectance estimation on these new basis functions decreases
the RMSE significantly over basis functions that are independent to sensor-illuminant. We conclude that, multispectral data acquisition is potentially possible with consumer hand-held devices such as tablets, mobiles, and laptops, opening up applications which are currently considered to be unrealistic.
 
  Address Melbourne; Australia; September 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICIP  
  Notes CIC; DAG; 600.048 Approved no  
  Call Number Admin @ si @ KWK2013b Serial 2265  
Permanent link to this record
 

 
Author Christophe Rigaud; Dimosthenis Karatzas; Joost Van de Weijer; Jean-Christophe Burie; Jean-Marc Ogier edit   pdf
openurl 
  Title Automatic text localisation in scanned comic books Type Conference Article
  Year (up) 2013 Publication Proceedings of the International Conference on Computer Vision Theory and Applications Abbreviated Journal  
  Volume Issue Pages 814-819  
  Keywords Text localization; comics; text/graphic separation; complex background; unstructured document  
  Abstract Comic books constitute an important cultural heritage asset in many countries. Digitization combined with subsequent document understanding enable direct content-based search as opposed to metadata only search (e.g. album title or author name). Few studies have been done in this direction. In this work we detail a novel approach for the automatic text localization in scanned comics book pages, an essential step towards a fully automatic comics book understanding. We focus on speech text as it is semantically important and represents the majority of the text present in comics. The approach is compared with existing methods of text localization found in the literature and results are presented.  
  Address Barcelona; February 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference VISAPP  
  Notes DAG; CIC; 600.056 Approved no  
  Call Number Admin @ si @ RKW2013b Serial 2261  
Permanent link to this record
 

 
Author Christophe Rigaud; Dimosthenis Karatzas; Joost Van de Weijer; Jean-Christophe Burie; Jean-Marc Ogier edit   pdf
doi  openurl
  Title An active contour model for speech balloon detection in comics Type Conference Article
  Year (up) 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1240-1244  
  Keywords  
  Abstract Comic books constitute an important cultural heritage asset in many countries. Digitization combined with subsequent comic book understanding would enable a variety of new applications, including content-based retrieval and content retargeting. Document understanding in this domain is challenging as comics are semi-structured documents, combining semantically important graphical and textual parts. Few studies have been done in this direction. In this work we detail a novel approach for closed and non-closed speech balloon localization in scanned comic book pages, an essential step towards a fully automatic comic book understanding. The approach is compared with existing methods for closed balloon localization found in the literature and results are presented.  
  Address washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; CIC; 600.056 Approved no  
  Call Number Admin @ si @ RKW2013a Serial 2260  
Permanent link to this record
 

 
Author Alicia Fornes; Xavier Otazu; Josep Llados edit   pdf
doi  openurl
  Title Show through cancellation and image enhancement by multiresolution contrast processing Type Conference Article
  Year (up) 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 200-204  
  Keywords  
  Abstract Historical documents suffer from different types of degradation and noise such as background variation, uneven illumination or dark spots. In case of double-sided documents, another common problem is that the back side of the document usually interferes with the front side because of the transparency of the document or ink bleeding. This effect is called the show through phenomenon. Many methods are developed to solve these problems, and in the case of show-through, by scanning and matching both the front and back sides of the document. In contrast, our approach is designed to use only one side of the scanned document. We hypothesize that show-trough are low contrast components, while foreground components are high contrast ones. A Multiresolution Contrast (MC) decomposition is presented in order to estimate the contrast of features at different spatial scales. We cancel the show-through phenomenon by thresholding these low contrast components. This decomposition is also able to enhance the image removing shadowed areas by weighting spatial scales. Results show that the enhanced images improve the readability of the documents, allowing scholars both to recover unreadable words and to solve ambiguities.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 602.006; 600.045; 600.061; 600.052;CIC Approved no  
  Call Number Admin @ si @ FOL2013 Serial 2241  
Permanent link to this record
 

 
Author David Aldavert; Marçal Rusiñol; Ricardo Toledo; Josep Llados edit   pdf
doi  openurl
  Title Integrating Visual and Textual Cues for Query-by-String Word Spotting Type Conference Article
  Year (up) 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 511 - 515  
  Keywords  
  Abstract In this paper, we present a word spotting framework that follows the query-by-string paradigm where word images are represented both by textual and visual representations. The textual representation is formulated in terms of character $n$-grams while the visual one is based on the bag-of-visual-words scheme. These two representations are merged together and projected to a sub-vector space. This transform allows to, given a textual query, retrieve word instances that were only represented by the visual modality. Moreover, this statistical representation can be used together with state-of-the-art indexation structures in order to deal with large-scale scenarios. The proposed method is evaluated using a collection of historical documents outperforming state-of-the-art performances.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; ADAS; 600.045; 600.055; 600.061 Approved no  
  Call Number Admin @ si @ ART2013 Serial 2224  
Permanent link to this record
 

 
Author Muhammad Muzzamil Luqman; Jean-Yves Ramel; Josep Llados; Thierry Brouard edit  url
doi  openurl
  Title Fuzzy Multilevel Graph Embedding Type Journal Article
  Year (up) 2013 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 46 Issue 2 Pages 551-565  
  Keywords Pattern recognition; Graphics recognition; Graph clustering; Graph classification; Explicit graph embedding; Fuzzy logic  
  Abstract Structural pattern recognition approaches offer the most expressive, convenient, powerful but computational expensive representations of underlying relational information. To benefit from mature, less expensive and efficient state-of-the-art machine learning models of statistical pattern recognition they must be mapped to a low-dimensional vector space. Our method of explicit graph embedding bridges the gap between structural and statistical pattern recognition. We extract the topological, structural and attribute information from a graph and encode numeric details by fuzzy histograms and symbolic details by crisp histograms. The histograms are concatenated to achieve a simple and straightforward embedding of graph into a low-dimensional numeric feature vector. Experimentation on standard public graph datasets shows that our method outperforms the state-of-the-art methods of graph embedding for richly attributed graphs.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.042; 600.045; 605.203 Approved no  
  Call Number Admin @ si @ LRL2013a Serial 2270  
Permanent link to this record
 

 
Author Anjan Dutta; Josep Llados; Umapada Pal edit   pdf
url  doi
openurl 
  Title A symbol spotting approach in graphical documents by hashing serialized graphs Type Journal Article
  Year (up) 2013 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 46 Issue 3 Pages 752-768  
  Keywords Symbol spotting; Graphics recognition; Graph matching; Graph serialization; Graph factorization; Graph paths; Hashing  
  Abstract In this paper we propose a symbol spotting technique in graphical documents. Graphs are used to represent the documents and a (sub)graph matching technique is used to detect the symbols in them. We propose a graph serialization to reduce the usual computational complexity of graph matching. Serialization of graphs is performed by computing acyclic graph paths between each pair of connected nodes. Graph paths are one-dimensional structures of graphs which are less expensive in terms of computation. At the same time they enable robust localization even in the presence of noise and distortion. Indexing in large graph databases involves a computational burden as well. We propose a graph factorization approach to tackle this problem. Factorization is intended to create a unified indexed structure over the database of graphical documents. Once graph paths are extracted, the entire database of graphical documents is indexed in hash tables by locality sensitive hashing (LSH) of shape descriptors of the paths. The hashing data structure aims to execute an approximate k-NN search in a sub-linear time. We have performed detailed experiments with various datasets of line drawings and compared our method with the state-of-the-art works. The results demonstrate the effectiveness and efficiency of our technique.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.042; 600.045; 605.203; 601.152 Approved no  
  Call Number Admin @ si @ DLP2012 Serial 2127  
Permanent link to this record
 

 
Author Miquel Ferrer; I. Bardaji; Ernest Valveny; Dimosthenis Karatzas; Horst Bunke edit  doi
isbn  openurl
  Title Median Graph Computation by Means of Graph Embedding into Vector Spaces Type Book Chapter
  Year (up) 2013 Publication Graph Embedding for Pattern Analysis Abbreviated Journal  
  Volume Issue Pages 45-72  
  Keywords  
  Abstract In pattern recognition [8, 14], a key issue to be addressed when designing a system is how to represent input patterns. Feature vectors is a common option. That is, a set of numerical features describing relevant properties of the pattern are computed and arranged in a vector form. The main advantages of this kind of representation are computational simplicity and a well sound mathematical foundation. Thus, a large number of operations are available to work with vectors and a large repository of algorithms for pattern analysis and classification exist. However, the simple structure of feature vectors might not be the best option for complex patterns where nonnumerical features or relations between different parts of the pattern become relevant.  
  Address  
  Corporate Author Thesis  
  Publisher Springer New York Place of Publication Editor Yun Fu; Yungian Ma  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4614-4456-5 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ FBV2013 Serial 2421  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: