toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Arnau Baro; Carles Badal; Pau Torras; Alicia Fornes edit   pdf
url  openurl
  Title Handwritten Historical Music Recognition through Sequence-to-Sequence with Attention Mechanism Type Conference Article
  Year (down) 2022 Publication 3rd International Workshop on Reading Music Systems (WoRMS2021) Abbreviated Journal  
  Volume Issue Pages 55-59  
  Keywords Optical Music Recognition; Digits; Image Classification  
  Abstract Despite decades of research in Optical Music Recognition (OMR), the recognition of old handwritten music scores remains a challenge because of the variabilities in the handwriting styles, paper degradation, lack of standard notation, etc. Therefore, the research in OMR systems adapted to the particularities of old manuscripts is crucial to accelerate the conversion of music scores existing in archives into digital libraries, fostering the dissemination and preservation of our music heritage. In this paper we explore the adaptation of sequence-to-sequence models with attention mechanism (used in translation and handwritten text recognition) and the generation of specific synthetic data for recognizing old music scores. The experimental validation demonstrates that our approach is promising, especially when compared with long short-term memory neural networks.  
  Address July 23, 2021, Alicante (Spain)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WoRMS  
  Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no  
  Call Number Admin @ si @ BBT2022 Serial 3734  
Permanent link to this record
 

 
Author Pau Torras; Arnau Baro; Alicia Fornes; Lei Kang edit   pdf
openurl 
  Title Improving Handwritten Music Recognition through Language Model Integration Type Conference Article
  Year (down) 2022 Publication 4th International Workshop on Reading Music Systems (WoRMS2022) Abbreviated Journal  
  Volume Issue Pages 42-46  
  Keywords optical music recognition; historical sources; diversity; music theory; digital humanities  
  Abstract Handwritten Music Recognition, especially in the historical domain, is an inherently challenging endeavour; paper degradation artefacts and the ambiguous nature of handwriting make recognising such scores an error-prone process, even for the current state-of-the-art Sequence to Sequence models. In this work we propose a way of reducing the production of statistically implausible output sequences by fusing a Language Model into a recognition Sequence to Sequence model. The idea is leveraging visually-conditioned and context-conditioned output distributions in order to automatically find and correct any mistakes that would otherwise break context significantly. We have found this approach to improve recognition results to 25.15 SER (%) from a previous best of 31.79 SER (%) in the literature.  
  Address November 18, 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WoRMS  
  Notes DAG; 600.121; 600.162; 602.230 Approved no  
  Call Number Admin @ si @ TBF2022 Serial 3735  
Permanent link to this record
 

 
Author Mohamed Ali Souibgui; Alicia Fornes; Yousri Kessentini; Beata Megyesi edit  doi
openurl 
  Title Few shots are all you need: A progressive learning approach for low resource handwritten text recognition Type Journal Article
  Year (down) 2022 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 160 Issue Pages 43-49  
  Keywords  
  Abstract Handwritten text recognition in low resource scenarios, such as manuscripts with rare alphabets, is a challenging problem. In this paper, we propose a few-shot learning-based handwriting recognition approach that significantly reduces the human annotation process, by requiring only a few images of each alphabet symbols. The method consists of detecting all the symbols of a given alphabet in a textline image and decoding the obtained similarity scores to the final sequence of transcribed symbols. Our model is first pretrained on synthetic line images generated from an alphabet, which could differ from the alphabet of the target domain. A second training step is then applied to reduce the gap between the source and the target data. Since this retraining would require annotation of thousands of handwritten symbols together with their bounding boxes, we propose to avoid such human effort through an unsupervised progressive learning approach that automatically assigns pseudo-labels to the unlabeled data. The evaluation on different datasets shows that our model can lead to competitive results with a significant reduction in human effort. The code will be publicly available in the following repository: https://github.com/dali92002/HTRbyMatching  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121; 600.162; 602.230 Approved no  
  Call Number Admin @ si @ SFK2022 Serial 3736  
Permanent link to this record
 

 
Author Joana Maria Pujadas-Mora; Alicia Fornes; Oriol Ramos Terrades; Josep Llados; Jialuo Chen; Miquel Valls-Figols; Anna Cabre edit  doi
openurl 
  Title The Barcelona Historical Marriage Database and the Baix Llobregat Demographic Database. From Algorithms for Handwriting Recognition to Individual-Level Demographic and Socioeconomic Data Type Journal
  Year (down) 2022 Publication Historical Life Course Studies Abbreviated Journal HLCS  
  Volume 12 Issue Pages 99-132  
  Keywords Individual demographic databases; Computer vision, Record linkage; Social mobility; Inequality; Migration; Word spotting; Handwriting recognition; Local censuses; Marriage Licences  
  Abstract The Barcelona Historical Marriage Database (BHMD) gathers records of the more than 600,000 marriages celebrated in the Diocese of Barcelona and their taxation registered in Barcelona Cathedral's so-called Marriage Licenses Books for the long period 1451–1905 and the BALL Demographic Database brings together the individual information recorded in the population registers, censuses and fiscal censuses of the main municipalities of the county of Baix Llobregat (Barcelona). In this ongoing collection 263,786 individual observations have been assembled, dating from the period between 1828 and 1965 by December 2020. The two databases started as part of different interdisciplinary research projects at the crossroads of Historical Demography and Computer Vision. Their construction uses artificial intelligence and computer vision methods as Handwriting Recognition to reduce the time of execution. However, its current state still requires some human intervention which explains the implemented crowdsourcing and game sourcing experiences. Moreover, knowledge graph techniques have allowed the application of advanced record linkage to link the same individuals and families across time and space. Moreover, we will discuss the main research lines using both databases developed so far in historical demography.  
  Address June 23, 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no  
  Call Number Admin @ si @ PFR2022 Serial 3737  
Permanent link to this record
 

 
Author Asma Bensalah; Alicia Fornes; Cristina Carmona_Duarte; Josep Llados edit   pdf
doi  openurl
  Title Easing Automatic Neurorehabilitation via Classification and Smoothness Analysis Type Conference Article
  Year (down) 2022 Publication Intertwining Graphonomics with Human Movements. 20th International Conference of the International Graphonomics Society, IGS 2022 Abbreviated Journal  
  Volume 13424 Issue Pages 336-348  
  Keywords Neurorehabilitation; Upper-lim; Movement classification; Movement smoothness; Deep learning; Jerk  
  Abstract Assessing the quality of movements for post-stroke patients during the rehabilitation phase is vital given that there is no standard stroke rehabilitation plan for all the patients. In fact, it depends basically on the patient’s functional independence and its progress along the rehabilitation sessions. To tackle this challenge and make neurorehabilitation more agile, we propose an automatic assessment pipeline that starts by recognising patients’ movements by means of a shallow deep learning architecture, then measuring the movement quality using jerk measure and related measures. A particularity of this work is that the dataset used is clinically relevant, since it represents movements inspired from Fugl-Meyer a well common upper-limb clinical stroke assessment scale for stroke patients. We show that it is possible to detect the contrast between healthy and patients movements in terms of smoothness, besides achieving conclusions about the patients’ progress during the rehabilitation sessions that correspond to the clinicians’ findings about each case.  
  Address June 7-9, 2022, Las Palmas de Gran Canaria, Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IGS  
  Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no  
  Call Number Admin @ si @ BFC2022 Serial 3738  
Permanent link to this record
 

 
Author Alicia Fornes; Asma Bensalah; Cristina Carmona_Duarte; Jialuo Chen; Miguel A. Ferrer; Andreas Fischer; Josep Llados; Cristina Martin; Eloy Opisso; Rejean Plamondon; Anna Scius-Bertrand; Josep Maria Tormos edit   pdf
url  doi
openurl 
  Title The RPM3D Project: 3D Kinematics for Remote Patient Monitoring Type Conference Article
  Year (down) 2022 Publication Intertwining Graphonomics with Human Movements. 20th International Conference of the International Graphonomics Society, IGS 2022 Abbreviated Journal  
  Volume 13424 Issue Pages 217-226  
  Keywords Healthcare applications; Kinematic; Theory of Rapid Human Movements; Human activity recognition; Stroke rehabilitation; 3D kinematics  
  Abstract This project explores the feasibility of remote patient monitoring based on the analysis of 3D movements captured with smartwatches. We base our analysis on the Kinematic Theory of Rapid Human Movement. We have validated our research in a real case scenario for stroke rehabilitation at the Guttmann Institute (https://www.guttmann.com/en/) (neurorehabilitation hospital), showing promising results. Our work could have a great impact in remote healthcare applications, improving the medical efficiency and reducing the healthcare costs. Future steps include more clinical validation, developing multi-modal analysis architectures (analysing data from sensors, images, audio, etc.), and exploring the application of our technology to monitor other neurodegenerative diseases.  
  Address June 7-9, 2022, Las Palmas de Gran Canaria, Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IGS  
  Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no  
  Call Number Admin @ si @ FBC2022 Serial 3739  
Permanent link to this record
 

 
Author Arnau Baro; Pau Riba; Alicia Fornes edit  doi
openurl 
  Title Musigraph: Optical Music Recognition Through Object Detection and Graph Neural Network Type Conference Article
  Year (down) 2022 Publication Frontiers in Handwriting Recognition. International Conference on Frontiers in Handwriting Recognition (ICFHR2022) Abbreviated Journal  
  Volume 13639 Issue Pages 171-184  
  Keywords Object detection; Optical music recognition; Graph neural network  
  Abstract During the last decades, the performance of optical music recognition has been increasingly improving. However, and despite the 2-dimensional nature of music notation (e.g. notes have rhythm and pitch), most works treat musical scores as a sequence of symbols in one dimension, which make their recognition still a challenge. Thus, in this work we explore the use of graph neural networks for musical score recognition. First, because graphs are suited for n-dimensional representations, and second, because the combination of graphs with deep learning has shown a great performance in similar applications. Our methodology consists of: First, we will detect each isolated/atomic symbols (those that can not be decomposed in more graphical primitives) and the primitives that form a musical symbol. Then, we will build the graph taking as root node the notehead and as leaves those primitives or symbols that modify the note’s rhythm (stem, beam, flag) or pitch (flat, sharp, natural). Finally, the graph is translated into a human-readable character sequence for a final transcription and evaluation. Our method has been tested on more than five thousand measures, showing promising results.  
  Address December 04 – 07, 2022; Hyderabad, India  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICFHR  
  Notes DAG; 600.162; 600.140; 602.230 Approved no  
  Call Number Admin @ si @ BRF2022b Serial 3740  
Permanent link to this record
 

 
Author Carlos Boned Riera; Oriol Ramos Terrades edit  doi
openurl 
  Title Discriminative Neural Variational Model for Unbalanced Classification Tasks in Knowledge Graph Type Conference Article
  Year (down) 2022 Publication 26th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2186-2191  
  Keywords Measurement; Couplings; Semantics; Ear; Benchmark testing; Data models; Pattern recognition  
  Abstract Nowadays the paradigm of link discovery problems has shown significant improvements on Knowledge Graphs. However, method performances are harmed by the unbalanced nature of this classification problem, since many methods are easily biased to not find proper links. In this paper we present a discriminative neural variational auto-encoder model, called DNVAE from now on, in which we have introduced latent variables to serve as embedding vectors. As a result, the learnt generative model approximate better the underlying distribution and, at the same time, it better differentiate the type of relations in the knowledge graph. We have evaluated this approach on benchmark knowledge graph and Census records. Results in this last data set are quite impressive since we reach the highest possible score in the evaluation metrics. However, further experiments are still needed to deeper evaluate the performance of the method in more challenging tasks.  
  Address Montreal; Quebec; Canada; August 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 600.121; 600.162 Approved no  
  Call Number Admin @ si @ BoR2022 Serial 3741  
Permanent link to this record
 

 
Author Arnau Baro edit  isbn
openurl 
  Title Reading Music Systems: From Deep Optical Music Recognition to Contextual Methods Type Book Whole
  Year (down) 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The transcription of sheet music into some machine-readable format can be carried out manually. However, the complexity of music notation inevitably leads to burdensome software for music score editing, which makes the whole process
very time-consuming and prone to errors. Consequently, automatic transcription
systems for musical documents represent interesting tools.
Document analysis is the subject that deals with the extraction and processing
of documents through image and pattern recognition. It is a branch of computer
vision. Taking music scores as source, the field devoted to address this task is
known as Optical Music Recognition (OMR). Typically, an OMR system takes an
image of a music score and automatically extracts its content into some symbolic
structure such as MEI or MusicXML.
In this dissertation, we have investigated different methods for recognizing a
single staff section (e.g. scores for violin, flute, etc.), much in the same way as most text recognition research focuses on recognizing words appearing in a given line image. These methods are based in two different methodologies. On the one hand, we present two methods based on Recurrent Neural Networks, in particular, the
Long Short-Term Memory Neural Network. On the other hand, a method based on Sequence to Sequence models is detailed.
Music context is needed to improve the OMR results, just like language models
and dictionaries help in handwriting recognition. For example, syntactical rules
and grammars could be easily defined to cope with the ambiguities in the rhythm.
In music theory, for example, the time signature defines the amount of beats per
bar unit. Thus, in the second part of this dissertation, different methodologies
have been investigated to improve the OMR recognition. We have explored three
different methods: (a) a graphic tree-structure representation, Dendrograms, that
joins, at each level, its primitives following a set of rules, (b) the incorporation of Language Models to model the probability of a sequence of tokens, and (c) graph neural networks to analyze the music scores to avoid meaningless relationships between music primitives.
Finally, to train all these methodologies, and given the method-specificity of
the datasets in the literature, we have created four different music datasets. Two of them are synthetic with a modern or old handwritten appearance, whereas the
other two are real handwritten scores, being one of them modern and the other
old.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Alicia Fornes  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-124793-8-6 Medium  
  Area Expedition Conference  
  Notes DAG; Approved no  
  Call Number Admin @ si @ Bar2022 Serial 3754  
Permanent link to this record
 

 
Author Ali Furkan Biten edit  isbn
openurl 
  Title A Bitter-Sweet Symphony on Vision and Language: Bias and World Knowledge Type Book Whole
  Year (down) 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Vision and Language are broadly regarded as cornerstones of intelligence. Even though language and vision have different aims – language having the purpose of communication, transmission of information and vision having the purpose of constructing mental representations around us to navigate and interact with objects – they cooperate and depend on one another in many tasks we perform effortlessly. This reliance is actively being studied in various Computer Vision tasks, e.g. image captioning, visual question answering, image-sentence retrieval, phrase grounding, just to name a few. All of these tasks share the inherent difficulty of the aligning the two modalities, while being robust to language
priors and various biases existing in the datasets. One of the ultimate goal for vision and language research is to be able to inject world knowledge while getting rid of the biases that come with the datasets. In this thesis, we mainly focus on two vision and language tasks, namely Image Captioning and Scene-Text Visual Question Answering (STVQA).
In both domains, we start by defining a new task that requires the utilization of world knowledge and in both tasks, we find that the models commonly employed are prone to biases that exist in the data. Concretely, we introduce new tasks and discover several problems that impede performance at each level and provide remedies or possible solutions in each chapter: i) We define a new task to move beyond Image Captioning to Image Interpretation that can utilize Named Entities in the form of world knowledge. ii) We study the object hallucination problem in classic Image Captioning systems and develop an architecture-agnostic solution. iii) We define a sub-task of Visual Question Answering that requires reading the text in the image (STVQA), where we highlight the limitations of current models. iv) We propose an architecture for the STVQA task that can point to the answer in the image and show how to combine it with classic VQA models. v) We show how far language can get us in STVQA and discover yet another bias which causes the models to disregard the image while doing Visual Question Answering.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Dimosthenis Karatzas;Lluis Gomez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-124793-5-5 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ Bit2022 Serial 3755  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: