toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author David Aldavert; Marçal Rusiñol; Ricardo Toledo; Josep Llados edit   pdf
doi  openurl
  Title Integrating Visual and Textual Cues for Query-by-String Word Spotting Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume (down) Issue Pages 511 - 515  
  Keywords  
  Abstract In this paper, we present a word spotting framework that follows the query-by-string paradigm where word images are represented both by textual and visual representations. The textual representation is formulated in terms of character $n$-grams while the visual one is based on the bag-of-visual-words scheme. These two representations are merged together and projected to a sub-vector space. This transform allows to, given a textual query, retrieve word instances that were only represented by the visual modality. Moreover, this statistical representation can be used together with state-of-the-art indexation structures in order to deal with large-scale scenarios. The proposed method is evaluated using a collection of historical documents outperforming state-of-the-art performances.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; ADAS; 600.045; 600.055; 600.061 Approved no  
  Call Number Admin @ si @ ART2013 Serial 2224  
Permanent link to this record
 

 
Author Anjan Dutta; Jaume Gibert; Josep Llados; Horst Bunke; Umapada Pal edit   pdf
isbn  openurl
  Title Combination of Product Graph and Random Walk Kernel for Symbol Spotting in Graphical Documents Type Conference Article
  Year 2012 Publication 21st International Conference on Pattern Recognition Abbreviated Journal  
  Volume (down) Issue Pages 1663-1666  
  Keywords  
  Abstract This paper explores the utilization of product graph for spotting symbols on graphical documents. Product graph is intended to find the candidate subgraphs or components in the input graph containing the paths similar to the query graph. The acute angle between two edges and their length ratio are considered as the node labels. In a second step, each of the candidate subgraphs in the input graph is assigned with a distance measure computed by a random walk kernel. Actually it is the minimum of the distances of the component to all the components of the model graph. This distance measure is then used to eliminate dissimilar components. The remaining neighboring components are grouped and the grouped zone is considered as a retrieval zone of a symbol similar to the queried one. The entire method works online, i.e., it doesn't need any preprocessing step. The present paper reports the initial results of the method, which are very encouraging.  
  Address Tsukuba, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN 978-1-4673-2216-4 Medium  
  Area Expedition Conference ICPR  
  Notes DAG Approved no  
  Call Number Admin @ si @ DGL2012 Serial 2125  
Permanent link to this record
 

 
Author Thanh Ha Do; Salvatore Tabbone; Oriol Ramos Terrades edit   pdf
url  openurl
  Title Text/graphic separation using a sparse representation with multi-learned dictionaries Type Conference Article
  Year 2012 Publication 21st International Conference on Pattern Recognition Abbreviated Journal  
  Volume (down) Issue Pages  
  Keywords Graphics Recognition; Layout Analysis; Document Understandin  
  Abstract In this paper, we propose a new approach to extract text regions from graphical documents. In our method, we first empirically construct two sequences of learned dictionaries for the text and graphical parts respectively. Then, we compute the sparse representations of all different sizes and non-overlapped document patches in these learned dictionaries. Based on these representations, each patch can be classified into the text or graphic category by comparing its reconstruction errors. Same-sized patches in one category are then merged together to define the corresponding text or graphic layers which are combined to createfinal text/graphic layer. Finally, in a post-processing step, text regions are further filtered out by using some learned thresholds.  
  Address Tsukuba  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG Approved no  
  Call Number Admin @ si @ DTR2012a Serial 2135  
Permanent link to this record
 

 
Author Thanh Ha Do; Salvatore Tabbone; Oriol Ramos Terrades edit   pdf
openurl 
  Title Noise suppression over bi-level graphical documents using a sparse representation Type Conference Article
  Year 2012 Publication Colloque International Francophone sur l'Écrit et le Document Abbreviated Journal  
  Volume (down) Issue Pages  
  Keywords  
  Abstract  
  Address Bordeaux  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CIFED  
  Notes DAG Approved no  
  Call Number Admin @ si @ DTR2012b Serial 2136  
Permanent link to this record
 

 
Author David Fernandez; Josep Llados; Alicia Fornes; R.Manmatha edit   pdf
doi  isbn
openurl 
  Title On Influence of Line Segmentation in Efficient Word Segmentation in Old Manuscripts Type Conference Article
  Year 2012 Publication 13th International Conference on Frontiers in Handwriting Recognition Abbreviated Journal  
  Volume (down) Issue Pages 763-768  
  Keywords document image processing;handwritten character recognition;history;image segmentation;Spanish document;historical document;line segmentation;old handwritten document;old manuscript;word segmentation;Bifurcation;Dynamic programming;Handwriting recognition;Image segmentation;Measurement;Noise;Skeleton;Segmentation;document analysis;document and text processing;handwriting analysis;heuristics;path-finding  
  Abstract he objective of this work is to show the importance of a good line segmentation to obtain better results in the segmentation of words of historical documents. We have used the approach developed by Manmatha and Rothfeder [1] to segment words in old handwritten documents. In their work the lines of the documents are extracted using projections. In this work, we have developed an approach to segment lines more efficiently. The new line segmentation algorithm tackles with skewed, touching and noisy lines, so it is significantly improves word segmentation. Experiments using Spanish documents from the Marriages Database of the Barcelona Cathedral show that this approach reduces the error rate by more than 20%  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4673-2262-1 Medium  
  Area Expedition Conference ICFHR  
  Notes DAG Approved no  
  Call Number Admin @ si @ FLF2012 Serial 2200  
Permanent link to this record
 

 
Author Jaume Gibert edit  openurl
  Title Vector Space Embedding of Graphs via Statistics of Labelling Information Type Book Whole
  Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume (down) Issue Pages  
  Keywords  
  Abstract Pattern recognition is the task that aims at distinguishing objects among different classes. When such a task wants to be solved in an automatic way a crucial step is how to formally represent such patterns to the computer. Based on the different representational formalisms, we may distinguish between statistical and structural pattern recognition. The former describes objects as a set of measurements arranged in the form of what is called a feature vector. The latter assumes that relations between parts of the underlying objects need to be explicitly represented and thus it uses relational structures such as graphs for encoding their inherent information. Vector spaces are a very flexible mathematical structure that has allowed to come up with several efficient ways for the analysis of patterns under the form of feature vectors. Nevertheless, such a representation cannot explicitly cope with binary relations between parts of the objects and it is restricted to measure the exact same number of features for each pattern under study regardless of their complexity. Graph-based representations present the contrary situation. They can easily adapt to the inherent complexity of the patterns but introduce a problem of high computational complexity, hindering the design of efficient tools to process and analyse patterns.

Solving this paradox is the main goal of this thesis. The ideal situation for solving pattern recognition problems would be to represent the patterns using relational structures such as graphs, and to be able to use the wealthy repository of data processing tools from the statistical pattern recognition domain. An elegant solution to this problem is to transform the graph domain into a vector domain where any processing algorithm can be applied. In other words, by mapping each graph to a point in a vector space we automatically get access to the rich set of algorithms from the statistical domain to be applied in the graph domain. Such methodology is called graph embedding.

In this thesis we propose to associate feature vectors to graphs in a simple and very efficient way by just putting attention on the labelling information that graphs store. In particular, we count frequencies of node labels and of edges between labels. Although their locality, these features are able to robustly represent structurally global properties of graphs, when considered together in the form of a vector. We initially deal with the case of discrete attributed graphs, where features are easy to compute. The continuous case is tackled as a natural generalization of the discrete one, where rather than counting node and edge labelling instances, we count statistics of some representatives of them. We encounter how the proposed vectorial representations of graphs suffer from high dimensionality and correlation among components and we face these problems by feature selection algorithms. We also explore how the diversity of different embedding representations can be exploited in order to boost the performance of base classifiers in a multiple classifier systems framework. An extensive experimental evaluation finally shows how the methodology we propose can be efficiently computed and compete with other graph matching and embedding methodologies.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Ernest Valveny  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ Gib2012 Serial 2204  
Permanent link to this record
 

 
Author Miquel Ferrer; I. Bardaji; Ernest Valveny; Dimosthenis Karatzas; Horst Bunke edit  doi
isbn  openurl
  Title Median Graph Computation by Means of Graph Embedding into Vector Spaces Type Book Chapter
  Year 2013 Publication Graph Embedding for Pattern Analysis Abbreviated Journal  
  Volume (down) Issue Pages 45-72  
  Keywords  
  Abstract In pattern recognition [8, 14], a key issue to be addressed when designing a system is how to represent input patterns. Feature vectors is a common option. That is, a set of numerical features describing relevant properties of the pattern are computed and arranged in a vector form. The main advantages of this kind of representation are computational simplicity and a well sound mathematical foundation. Thus, a large number of operations are available to work with vectors and a large repository of algorithms for pattern analysis and classification exist. However, the simple structure of feature vectors might not be the best option for complex patterns where nonnumerical features or relations between different parts of the pattern become relevant.  
  Address  
  Corporate Author Thesis  
  Publisher Springer New York Place of Publication Editor Yun Fu; Yungian Ma  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4614-4456-5 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ FBV2013 Serial 2421  
Permanent link to this record
 

 
Author A.Kesidis; Dimosthenis Karatzas edit  doi
isbn  openurl
  Title Logo and Trademark Recognition Type Book Chapter
  Year 2014 Publication Handbook of Document Image Processing and Recognition Abbreviated Journal  
  Volume (down) D Issue Pages 591-646  
  Keywords Logo recognition; Logo removal; Logo spotting; Trademark registration; Trademark retrieval systems  
  Abstract The importance of logos and trademarks in nowadays society is indisputable, variably seen under a positive light as a valuable service for consumers or a negative one as a catalyst of ever-increasing consumerism. This chapter discusses the technical approaches for enabling machines to work with logos, looking into the latest methodologies for logo detection, localization, representation, recognition, retrieval, and spotting in a variety of media. This analysis is presented in the context of three different applications covering the complete depth and breadth of state of the art techniques. These are trademark retrieval systems, logo recognition in document images, and logo detection and removal in images and videos. This chapter, due to the very nature of logos and trademarks, brings together various facets of document image analysis spanning graphical and textual content, while it links document image analysis to other computer vision domains, especially when it comes to the analysis of real-scene videos and images.  
  Address  
  Corporate Author Thesis  
  Publisher Springer London Place of Publication Editor D. Doermann; K. Tombre  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-85729-858-4 Medium  
  Area Expedition Conference  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ KeK2014 Serial 2425  
Permanent link to this record
 

 
Author Christophe Rigaud; Dimosthenis Karatzas; Jean-Christophe Burie; Jean-Marc Ogier edit  openurl
  Title Speech balloon contour classification in comics Type Conference Article
  Year 2013 Publication 10th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume (down) Issue Pages  
  Keywords  
  Abstract Comic books digitization combined with subsequent comic book understanding create a variety of new applications, including mobile reading and data mining. Document understanding in this domain is challenging as comics are semi-structured documents, combining semantically important graphical and textual parts. In this work we detail a novel approach for classifying speech balloon in scanned comics book pages based on their contour time series.  
  Address Bethlehem; PA; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG; 600.056 Approved no  
  Call Number Admin @ si @ RKB2013 Serial 2429  
Permanent link to this record
 

 
Author Carles Sanchez; Oriol Ramos Terrades; Patricia Marquez; Enric Marti; Jaume Rocarias; Debora Gil edit   pdf
openurl 
  Title Evaluación automática de prácticas en Moodle para el aprendizaje autónomo en Ingenierías Type Miscellaneous
  Year 2014 Publication 8th International Congress on University Teaching and Innovation Abbreviated Journal  
  Volume (down) Issue Pages  
  Keywords  
  Abstract  
  Address Tarragona; juliol 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CIDUI  
  Notes IAM; 600.075;DAG Approved no  
  Call Number Admin @ si @ SRM2014 Serial 2458  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: