toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Muhammad Muzzamil Luqman; Josep Llados; Jean-Yves Ramel; Thierry Brouard edit  doi
isbn  openurl
  Title A Fuzzy-Interval Based Approach For Explicit Graph Embedding, Recognizing Patterns in Signals, Speech, Images and Video Type Conference Article
  Year 2010 Publication 20th International Conference on Pattern Recognition Abbreviated Journal  
  Volume (down) 6388 Issue Pages 93–98  
  Keywords  
  Abstract We present a new method for explicit graph embedding. Our algorithm extracts a feature vector for an undirected attributed graph. The proposed feature vector encodes details about the number of nodes, number of edges, node degrees, the attributes of nodes and the attributes of edges in the graph. The first two features are for the number of nodes and the number of edges. These are followed by w features for node degrees, m features for k node attributes and n features for l edge attributes — which represent the distribution of node degrees, node attribute values and edge attribute values, and are obtained by defining (in an unsupervised fashion), fuzzy-intervals over the list of node degrees, node attributes and edge attributes. Experimental results are provided for sample data of ICPR2010 contest GEPR.  
  Address  
  Corporate Author Thesis  
  Publisher Springer, Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-17710-1 Medium  
  Area Expedition Conference ICPR  
  Notes DAG Approved no  
  Call Number DAG @ dag @ LLR2010 Serial 1459  
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny edit  doi
isbn  openurl
  Title Graph Embedding based on Nodes Attributes Representatives and a Graph of Words Representation. Type Conference Article
  Year 2010 Publication 13th International worshop on structural and syntactic pattern recognition and 8th international worshop on statistical pattern recognition Abbreviated Journal  
  Volume (down) 6218 Issue Pages 223–232  
  Keywords  
  Abstract Although graph embedding has recently been used to extend statistical pattern recognition techniques to the graph domain, some existing embeddings are usually computationally expensive as they rely on classical graph-based operations. In this paper we present a new way to embed graphs into vector spaces by first encapsulating the information stored in the original graph under another graph representation by clustering the attributes of the graphs to be processed. This new representation makes the association of graphs to vectors an easy step by just arranging both node attributes and the adjacency matrix in the form of vectors. To test our method, we use two different databases of graphs whose nodes attributes are of different nature. A comparison with a reference method permits to show that this new embedding is better in terms of classification rates, while being much more faster.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor In E.R. Hancock, R.C. Wilson, T. Windeatt, I. Ulusoy and F. Escolano,  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-14979-5 Medium  
  Area Expedition Conference S+SSPR  
  Notes DAG Approved no  
  Call Number DAG @ dag @ GiV2010 Serial 1416  
Permanent link to this record
 

 
Author Salim Jouili; Salvatore Tabbone; Ernest Valveny edit   pdf
doi  isbn
openurl 
  Title Comparing Graph Similarity Measures for Graphical Recognition Type Book Chapter
  Year 2010 Publication Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers Abbreviated Journal  
  Volume (down) 6020 Issue Pages 37-48  
  Keywords  
  Abstract In this paper we evaluate four graph distance measures. The analysis is performed for document retrieval tasks. For this aim, different kind of documents are used including line drawings (symbols), ancient documents (ornamental letters), shapes and trademark-logos. The experimental results show that the performance of each graph distance measure depends on the kind of data and the graph representation technique.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-13727-3 Medium  
  Area Expedition Conference GREC  
  Notes DAG Approved no  
  Call Number Admin @ si @ JTV2010 Serial 2404  
Permanent link to this record
 

 
Author Jean-Marc Ogier; Wenyin Liu; Josep Llados (eds) edit  isbn
openurl 
  Title Graphics Recognition: Achievements, Challenges, and Evolution Type Book Whole
  Year 2010 Publication 8th International Workshop GREC 2009. Abbreviated Journal  
  Volume (down) 6020 Issue Pages  
  Keywords  
  Abstract  
  Address La Rochelle  
  Corporate Author Thesis  
  Publisher Springer Link Place of Publication Editor Jean-Marc Ogier; Wenyin Liu; Josep Llados  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-13727-3 Medium  
  Area Expedition Conference GREC  
  Notes DAG Approved no  
  Call Number Admin @ si @ OLL2010 Serial 1976  
Permanent link to this record
 

 
Author Joan Mas; Gemma Sanchez; Josep Llados edit  doi
isbn  openurl
  Title SSP: Sketching slide Presentations, a Syntactic Approach Type Book Chapter
  Year 2010 Publication Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers Abbreviated Journal  
  Volume (down) 6020 Issue Pages 118-129  
  Keywords  
  Abstract The design of a slide presentation is a creative process. In this process first, humans visualize in their minds what they want to explain. Then, they have to be able to represent this knowledge in an understandable way. There exists a lot of commercial software that allows to create our own slide presentations but the creativity of the user is rather limited. In this article we present an application that allows the user to create and visualize a slide presentation from a sketch. A slide may be seen as a graphical document or a diagram where its elements are placed in a particular spatial arrangement. To describe and recognize slides a syntactic approach is proposed. This approach is based on an Adjacency Grammar and a parsing methodology to cope with this kind of grammars. The experimental evaluation shows the performance of our methodology from a qualitative and a quantitative point of view. Six different slides containing different number of symbols, from 4 to 7, have been given to the users and they have drawn them without restrictions in the order of the elements. The quantitative results give an idea on how suitable is our methodology to describe and recognize the different elements in a slide.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-13727-3 Medium  
  Area Expedition Conference GREC  
  Notes DAG Approved no  
  Call Number MSL2010 Serial 2405  
Permanent link to this record
 

 
Author Mathieu Nicolas Delalandre; Jean-Yves Ramel; Ernest Valveny; Muhammad Muzzamil Luqman edit  doi
isbn  openurl
  Title A Performance Characterization Algorithm for Symbol Localization Type Book Chapter
  Year 2010 Publication Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers Abbreviated Journal  
  Volume (down) 6020 Issue Pages 260–271  
  Keywords  
  Abstract In this paper we present an algorithm for performance characterization of symbol localization systems. This algorithm is aimed to be a more “reliable” and “open” solution to characterize the performance. To achieve that, it exploits only single points as the result of localization and offers the possibility to reconsider the localization results provided by a system. We use the information about context in groundtruth, and overall localization results, to detect the ambiguous localization results. A probability score is computed for each matching between a localization point and a groundtruth region, depending on the spatial distribution of the other regions in the groundtruth. Final characterization is given with detection rate/probability score plots, describing the sets of possible interpretations of the localization results, according to a given confidence rate. We present experimentation details along with the results for the symbol localization system of [1], exploiting a synthetic dataset of architectural floorplans and electrical diagrams (composed of 200 images and 3861 symbols).  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-13727-3 Medium  
  Area Expedition Conference GREC  
  Notes DAG Approved no  
  Call Number Admin @ si @ DRV2010 Serial 2406  
Permanent link to this record
 

 
Author Marçal Rusiñol; K. Bertet; Jean-Marc Ogier; Josep Llados edit  doi
isbn  openurl
  Title Symbol Recognition Using a Concept Lattice of Graphical Patterns Type Book Chapter
  Year 2010 Publication Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers Abbreviated Journal  
  Volume (down) 6020 Issue Pages 187-198  
  Keywords  
  Abstract In this paper we propose a new approach to recognize symbols by the use of a concept lattice. We propose to build a concept lattice in terms of graphical patterns. Each model symbol is decomposed in a set of composing graphical patterns taken as primitives. Each one of these primitives is described by boundary moment invariants. The obtained concept lattice relates which symbolic patterns compose a given graphical symbol. A Hasse diagram is derived from the context and is used to recognize symbols affected by noise. We present some preliminary results over a variation of the dataset of symbols from the GREC 2005 symbol recognition contest.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-13727-3 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ RBO2010 Serial 2407  
Permanent link to this record
 

 
Author Partha Pratim Roy; Umapada Pal; Josep Llados edit  doi
isbn  openurl
  Title Touching Text Character Localization in Graphical Documents using SIFT Type Book Chapter
  Year 2010 Publication Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers Abbreviated Journal  
  Volume (down) 6020 Issue Pages 199-211  
  Keywords Support Vector Machine; Text Component; Graphical Line; Document Image; Scale Invariant Feature Transform  
  Abstract Interpretation of graphical document images is a challenging task as it requires proper understanding of text/graphics symbols present in such documents. Difficulties arise in graphical document recognition when text and symbol overlapped/touched. Intersection of text and symbols with graphical lines and curves occur frequently in graphical documents and hence separation of such symbols is very difficult.
Several pattern recognition and classification techniques exist to recognize isolated text/symbol. But, the touching/overlapping text and symbol recognition has not yet been dealt successfully. An interesting technique, Scale Invariant Feature Transform (SIFT), originally devised for object recognition can take care of overlapping problems. Even if SIFT features have emerged as a very powerful object descriptors, their employment in graphical documents context has not been investigated much. In this paper we present the adaptation of the SIFT approach in the context of text character localization (spotting) in graphical documents. We evaluate the applicability of this technique in such documents and discuss the scope of improvement by combining some state-of-the-art approaches.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-13727-3 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ RPL2010c Serial 2408  
Permanent link to this record
 

 
Author Sergio Escalera; Alicia Fornes; Oriol Pujol; Petia Radeva edit  doi
isbn  openurl
  Title Multi-class Binary Symbol Classification with Circular Blurred Shape Models Type Conference Article
  Year 2009 Publication 15th International Conference on Image Analysis and Processing Abbreviated Journal  
  Volume (down) 5716 Issue Pages 1005–1014  
  Keywords  
  Abstract Multi-class binary symbol classification requires the use of rich descriptors and robust classifiers. Shape representation is a difficult task because of several symbol distortions, such as occlusions, elastic deformations, gaps or noise. In this paper, we present the Circular Blurred Shape Model descriptor. This descriptor encodes the arrangement information of object parts in a correlogram structure. A prior blurring degree defines the level of distortion allowed to the symbol. Moreover, we learn the new feature space using a set of Adaboost classifiers, which are combined in the Error-Correcting Output Codes framework to deal with the multi-class categorization problem. The presented work has been validated over different multi-class data sets, and compared to the state-of-the-art descriptors, showing significant performance improvements.  
  Address Salerno, Italy  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-04145-7 Medium  
  Area Expedition Conference ICIAP  
  Notes MILAB;HuPBA;DAG Approved no  
  Call Number BCNPCL @ bcnpcl @ EFP2009c Serial 1186  
Permanent link to this record
 

 
Author L.Tarazon; D. Perez; N. Serrano; V. Alabau; Oriol Ramos Terrades; A. Sanchis; A. Juan edit  doi
isbn  openurl
  Title Confidence Measures for Error Correction in Interactive Transcription of Handwritten Text Type Conference Article
  Year 2009 Publication 15th International Conference on Image Analysis and Processing Abbreviated Journal  
  Volume (down) 5716 Issue Pages 567-574  
  Keywords  
  Abstract An effective approach to transcribe old text documents is to follow an interactive-predictive paradigm in which both, the system is guided by the human supervisor, and the supervisor is assisted by the system to complete the transcription task as efficiently as possible. In this paper, we focus on a particular system prototype called GIDOC, which can be seen as a first attempt to provide user-friendly, integrated support for interactive-predictive page layout analysis, text line detection and handwritten text transcription. More specifically, we focus on the handwriting recognition part of GIDOC, for which we propose the use of confidence measures to guide the human supervisor in locating possible system errors and deciding how to proceed. Empirical results are reported on two datasets showing that a word error rate not larger than a 10% can be achieved by only checking the 32% of words that are recognised with less confidence.  
  Address Vietri sul Mare, Italy  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-04145-7 Medium  
  Area Expedition Conference ICIAP  
  Notes DAG Approved no  
  Call Number Admin @ si @ TPS2009 Serial 1871  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: