|
Records |
Links |
|
Author |
Dena Bazazian; Raul Gomez; Anguelos Nicolaou; Lluis Gomez; Dimosthenis Karatzas; Andrew Bagdanov |
|
|
Title |
Improving Text Proposals for Scene Images with Fully Convolutional Networks |
Type |
Conference Article |
|
Year |
2016 |
Publication |
23rd International Conference on Pattern Recognition Workshops |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Text Proposals have emerged as a class-dependent version of object proposals – efficient approaches to reduce the search space of possible text object locations in an image. Combined with strong word classifiers, text proposals currently yield top state of the art results in end-to-end scene text
recognition. In this paper we propose an improvement over the original Text Proposals algorithm of [1], combining it with Fully Convolutional Networks to improve the ranking of proposals. Results on the ICDAR RRC and the COCO-text datasets show superior performance over current state-of-the-art. |
|
|
Address |
Cancun; Mexico; December 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPRW |
|
|
Notes |
DAG; LAMP; 600.084 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BGN2016 |
Serial |
2823 |
|
Permanent link to this record |
|
|
|
|
Author |
Francisco Cruz |
|
|
Title |
Probabilistic Graphical Models for Document Analysis |
Type |
Book Whole |
|
Year |
2016 |
Publication |
PhD Thesis, Universitat Autonoma de Barcelona-CVC |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Latest advances in digitization techniques have fostered the interest in creating digital copies of collections of documents. Digitized documents permit an easy maintenance, loss-less storage, and efficient ways for transmission and to perform information retrieval processes. This situation has opened a new market niche to develop systems able to automatically extract and analyze information contained in these collections, specially in the ambit of the business activity.
Due to the great variety of types of documents this is not a trivial task. For instance, the automatic extraction of numerical data from invoices differs substantially from a task of text recognition in historical documents. However, in order to extract the information of interest, is always necessary to identify the area of the document where it is located. In the area of Document Analysis we refer to this process as layout analysis, which aims at identifying and categorizing the different entities that compose the document, such as text regions, pictures, text lines, or tables, among others. To perform this task it is usually necessary to incorporate a prior knowledge about the task into the analysis process, which can be modeled by defining a set of contextual relations between the different entities of the document. The use of context has proven to be useful to reinforce the recognition process and improve the results on many computer vision tasks. It presents two fundamental questions: What kind of contextual information is appropriate for a given task, and how to incorporate this information into the models.
In this thesis we study several ways to incorporate contextual information to the task of document layout analysis, and to the particular case of handwritten text line segmentation. We focus on the study of Probabilistic Graphical Models and other mechanisms for this purpose, and propose several solutions to these problems. First, we present a method for layout analysis based on Conditional Random Fields. With this model we encode local contextual relations between variables, such as pair-wise constraints. Besides, we encode a set of structural relations between different classes of regions at feature level. Second, we present a method based on 2D-Probabilistic Context-free Grammars to encode structural and hierarchical relations. We perform a comparative study between Probabilistic Graphical Models and this syntactic approach. Third, we propose a method for structured documents based on Bayesian Networks to represent the document structure, and an algorithm based in the Expectation-Maximization to find the best configuration of the page. We perform a thorough evaluation of the proposed methods on two particular collections of documents: a historical collection composed of ancient structured documents, and a collection of contemporary documents. In addition, we present a general method for the task of handwritten text line segmentation. We define a probabilistic framework where we combine the EM algorithm with variational approaches for computing inference and parameter learning on a Markov Random Field. We evaluate our method on several collections of documents, including a general dataset of annotated administrative documents. Results demonstrate the applicability of our method to real problems, and the contribution of the use of contextual information to this kind of problems. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
Ph.D. thesis |
|
|
Publisher |
Ediciones Graficas Rey |
Place of Publication |
|
Editor |
Oriol Ramos Terrades |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-84-945373-2-5 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ Cru2016 |
Serial |
2861 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Gomez; Dimosthenis Karatzas |
|
|
Title |
A fine-grained approach to scene text script identification |
Type |
Conference Article |
|
Year |
2016 |
Publication |
12th IAPR Workshop on Document Analysis Systems |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
192-197 |
|
|
Keywords |
|
|
|
Abstract |
This paper focuses on the problem of script identification in unconstrained scenarios. Script identification is an important prerequisite to recognition, and an indispensable condition for automatic text understanding systems designed for multi-language environments. Although widely studied for document images and handwritten documents, it remains an almost unexplored territory for scene text images. We detail a novel method for script identification in natural images that combines convolutional features and the Naive-Bayes Nearest Neighbor classifier. The proposed framework efficiently exploits the discriminative power of small stroke-parts, in a fine-grained classification framework. In addition, we propose a new public benchmark dataset for the evaluation of joint text detection and script identification in natural scenes. Experiments done in this new dataset demonstrate that the proposed method yields state of the art results, while it generalizes well to different datasets and variable number of scripts. The evidence provided shows that multi-lingual scene text recognition in the wild is a viable proposition. Source code of the proposed method is made available online. |
|
|
Address |
Santorini; Grecia; April 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DAS |
|
|
Notes |
DAG; 601.197; 600.084 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GoK2016b |
Serial |
2863 |
|
Permanent link to this record |
|
|
|
|
Author |
Youssef El Rhabi; Simon Loic; Brun Luc; Josep Llados; Felipe Lumbreras |
|
|
Title |
Information Theoretic Rotationwise Robust Binary Descriptor Learning |
Type |
Conference Article |
|
Year |
2016 |
Publication |
Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
368-378 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we propose a new data-driven approach for binary descriptor selection. In order to draw a clear analysis of common designs, we present a general information-theoretic selection paradigm. It encompasses several standard binary descriptor construction schemes, including a recent state-of-the-art one named BOLD. We pursue the same endeavor to increase the stability of the produced descriptors with respect to rotations. To achieve this goal, we have designed a novel offline selection criterion which is better adapted to the online matching procedure. The effectiveness of our approach is demonstrated on two standard datasets, where our descriptor is compared to BOLD and to several classical descriptors. In particular, it emerges that our approach can reproduce equivalent if not better performance as BOLD while relying on twice shorter descriptors. Such an improvement can be influential for real-time applications. |
|
|
Address |
Mérida; Mexico; November 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
S+SSPR |
|
|
Notes |
DAG; ADAS; 600.097; 600.086 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RLL2016 |
Serial |
2871 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Alicia Fornes; Josep Llados |
|
|
Title |
Towards the Alignment of Handwritten Music Scores |
Type |
Conference Article |
|
Year |
2015 |
Publication |
11th IAPR International Workshop on Graphics Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
It is very common to find different versions of the same music work in archives of Opera Theaters. These differences correspond to modifications and annotations from the musicians. From the musicologist point of view, these variations are very interesting and deserve study. This paper explores the alignment of music scores as a tool for automatically detecting the passages that contain such differences. Given the difficulties in the recognition of handwritten music scores, our goal is to align the music scores and at the same time, avoid the recognition of music elements as much as possible. After removing the staff lines, braces and ties, the bar lines are detected. Then, the bar units are described as a whole using the Blurred Shape Model. The bar units alignment is performed by using Dynamic Time Warping. The analysis of the alignment path is used to detect the variations in the music scores. The method has been evaluated on a subset of the CVC-MUSCIMA dataset, showing encouraging results. |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer International Publishing |
Place of Publication |
|
Editor |
Bart Lamiroy; Rafael Dueire Lins |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-3-319-52158-9 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ |
Serial |
2874 |
|
Permanent link to this record |
|
|
|
|
Author |
Anjan Dutta; Umapada Pal; Josep Llados |
|
|
Title |
Compact Correlated Features for Writer Independent Signature Verification |
Type |
Conference Article |
|
Year |
2016 |
Publication |
23rd International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This paper considers the offline signature verification problem which is considered to be an important research line in the field of pattern recognition. In this work we propose hybrid features that consider the local features and their global statistics in the signature image. This has been done by creating a vocabulary of histogram of oriented gradients (HOGs). We impose weights on these local features based on the height information of water reservoirs obtained from the signature. Spatial information between local features are thought to play a vital role in considering the geometry of the signatures which distinguishes the originals from the forged ones. Nevertheless, learning a condensed set of higher order neighbouring features based on visual words, e.g., doublets and triplets, continues to be a challenging problem as possible combinations of visual words grow exponentially. To avoid this explosion of size, we create a code of local pairwise features which are represented as joint descriptors. Local features are paired based on the edges of a graph representation built upon the Delaunay triangulation. We reveal the advantage of combining both type of visual codebooks (order one and pairwise) for signature verification task. This is validated through an encouraging result on two benchmark datasets viz. CEDAR and GPDS300. |
|
|
Address |
Cancun; Mexico; December 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG; 600.097 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DPL2016 |
Serial |
2875 |
|
Permanent link to this record |
|
|
|
|
Author |
Sounak Dey; Anguelos Nicolaou; Josep Llados; Umapada Pal |
|
|
Title |
Local Binary Pattern for Word Spotting in Handwritten Historical Document |
Type |
Conference Article |
|
Year |
2016 |
Publication |
Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
574-583 |
|
|
Keywords |
Local binary patterns; Spatial sampling; Learning-free; Word spotting; Handwritten; Historical document analysis; Large-scale data |
|
|
Abstract |
Digital libraries store images which can be highly degraded and to index this kind of images we resort to word spotting as our information retrieval system. Information retrieval for handwritten document images is more challenging due to the difficulties in complex layout analysis, large variations of writing styles, and degradation or low quality of historical manuscripts. This paper presents a simple innovative learning-free method for word spotting from large scale historical documents combining Local Binary Pattern (LBP) and spatial sampling. This method offers three advantages: firstly, it operates in completely learning free paradigm which is very different from unsupervised learning methods, secondly, the computational time is significantly low because of the LBP features, which are very fast to compute, and thirdly, the method can be used in scenarios where annotations are not available. Finally, we compare the results of our proposed retrieval method with other methods in the literature and we obtain the best results in the learning free paradigm. |
|
|
Address |
Merida; Mexico; December 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
S+SSPR |
|
|
Notes |
DAG; 600.097; 602.006; 603.053 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DNL2016 |
Serial |
2876 |
|
Permanent link to this record |
|
|
|
|
Author |
Albert Berenguel; Oriol Ramos Terrades; Josep Llados; Cristina Cañero |
|
|
Title |
Banknote counterfeit detection through background texture printing analysis |
Type |
Conference Article |
|
Year |
2016 |
Publication |
12th IAPR Workshop on Document Analysis Systems |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This paper is focused on the detection of counterfeit photocopy banknotes. The main difficulty is to work on a real industrial scenario without any constraint about the acquisition device and with a single image. The main contributions of this paper are twofold: first the adaptation and performance evaluation of existing approaches to classify the genuine and photocopy banknotes using background texture printing analysis, which have not been applied into this context before. Second, a new dataset of Euro banknotes images acquired with several cameras under different luminance conditions to evaluate these methods. Experiments on the proposed algorithms show that mixing SIFT features and sparse coding dictionaries achieves quasi perfect classification using a linear SVM with the created dataset. Approaches using dictionaries to cover all possible texture variations have demonstrated to be robust and outperform the state-of-the-art methods using the proposed benchmark. |
|
|
Address |
Rumania; May 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DAS |
|
|
Notes |
DAG; 600.061; 601.269; 600.097 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BRL2016 |
Serial |
2950 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Gomez; Y. Patel; Marçal Rusiñol; C.V. Jawahar; Dimosthenis Karatzas |
|
|
Title |
Self‐supervised learning of visual features through embedding images into text topic spaces |
Type |
Conference Article |
|
Year |
2017 |
Publication |
30th IEEE Conference on Computer Vision and Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
End-to-end training from scratch of current deep architectures for new computer vision problems would require Imagenet-scale datasets, and this is not always possible. In this paper we present a method that is able to take advantage of freely available multi-modal content to train computer vision algorithms without human supervision. We put forward the idea of performing self-supervised learning of visual features by mining a large scale corpus of multi-modal (text and image) documents. We show that discriminative visual features can be learnt efficiently by training a CNN to predict the semantic context in which a particular image is more probable to appear as an illustration. For this we leverage the hidden semantic structures discovered in the text corpus with a well-known topic modeling technique. Our experiments demonstrate state of the art performance in image classification, object detection, and multi-modal retrieval compared to recent self-supervised or natural-supervised approaches. |
|
|
Address |
Honolulu; Hawaii; July 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CVPR |
|
|
Notes |
DAG; 600.084; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GPR2017 |
Serial |
2889 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Gomez |
|
|
Title |
Exploiting Similarity Hierarchies for Multi-script Scene Text Understanding |
Type |
Book Whole |
|
Year |
2016 |
Publication |
PhD Thesis, Universitat Autonoma de Barcelona-CVC |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This thesis addresses the problem of automatic scene text understanding in unconstrained conditions. In particular, we tackle the tasks of multi-language and arbitrary-oriented text detection, tracking, and script identification in natural scenes.
For this we have developed a set of generic methods that build on top of the basic observation that text has always certain key visual and structural characteristics that are independent of the language or script in which it is written. Text instances in any
language or script are always formed as groups of similar atomic parts, being them either individual characters, small stroke parts, or even whole words in the case of cursive text. This holistic (sumof-parts) and recursive perspective has lead us to explore different variants of the “segmentation and grouping” paradigm of computer vision.
Scene text detection methodologies are usually based in classification of individual regions or patches, using a priory knowledge for a given script or language. Human perception of text, on the other hand, is based on perceptual organization through which
text emerges as a perceptually significant group of atomic objects.
In this thesis, we argue that the text detection problem must be posed as the detection of meaningful groups of regions. We address the problem of text detection in natural scenes from a hierarchical perspective, making explicit use of the recursive nature of text, aiming directly to the detection of region groupings corresponding to text within a hierarchy produced by an agglomerative similarity clustering process over individual regions. We propose an optimal way to construct such an hierarchy introducing a feature space designed to produce text group hypothese with high recall and a novel stopping rule combining a discriminative classifier and a probabilistic measure of group meaningfulness based in perceptual organization. Within this generic framework, we design a text-specific object proposals algorithm that, contrary to existing generic object proposals methods, aims directly to the detection of text regions groupings. For this, we abandon the rigid definition of “what is text” of traditional specialized text detectors, and move towards more fuzzy perspective of grouping-based object proposals methods.
Then, we present a hybrid algorithm for detection and tracking of scene text where the notion of region groupings plays also a central role. By leveraging the structural arrangement of text group components between consecutive frames we can improve
the overall tracking performance of the system.
Finally, since our generic detection framework is inherently designed for multi-language environments, we focus on the problem of script identification in order to build a multi-language end-toend reading system. Facing this problem with state of the art CNN classifiers is not straightforward, as they fail to address a key
characteristic of scene text instances: their extremely variable aspect ratio. Instead of resizing input images to a fixed size as in the typical use of holistic CNN classifiers, we propose a patch-based classification framework in order to preserve discriminative parts of the image that are characteristic of its class. We describe a novel method based on the use of ensembles of conjoined networks to jointly learn discriminative stroke-parts representations and their relative importance in a patch-based classification scheme. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
Ph.D. thesis |
|
|
Publisher |
|
Place of Publication |
|
Editor |
Dimosthenis Karatzas |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ Gom2016 |
Serial |
2891 |
|
Permanent link to this record |