|
Records |
Links |
|
Author |
Minesh Mathew; Ruben Tito; Dimosthenis Karatzas; R.Manmatha; C.V. Jawahar |
|
|
Title |
Document Visual Question Answering Challenge 2020 |
Type |
Conference Article |
|
Year |
2020 |
Publication |
33rd IEEE Conference on Computer Vision and Pattern Recognition – Short paper |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This paper presents results of Document Visual Question Answering Challenge organized as part of “Text and Documents in the Deep Learning Era” workshop, in CVPR 2020. The challenge introduces a new problem – Visual Question Answering on document images. The challenge comprised two tasks. The first task concerns with asking questions on a single document image. On the other hand, the second task is set as a retrieval task where the question is posed over a collection of images. For the task 1 a new dataset is introduced comprising 50,000 questions-answer(s) pairs defined over 12,767 document images. For task 2 another dataset has been created comprising 20 questions over 14,362 document images which share the same document template. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CVPR |
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ MTK2020 |
Serial |
3558 |
|
Permanent link to this record |
|
|
|
|
Author |
Adria Molina; Pau Riba; Lluis Gomez; Oriol Ramos Terrades; Josep Llados |
|
|
Title |
Date Estimation in the Wild of Scanned Historical Photos: An Image Retrieval Approach |
Type |
Conference Article |
|
Year |
2021 |
Publication |
16th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
12822 |
Issue |
|
Pages |
306-320 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a novel method for date estimation of historical photographs from archival sources. The main contribution is to formulate the date estimation as a retrieval task, where given a query, the retrieved images are ranked in terms of the estimated date similarity. The closer are their embedded representations the closer are their dates. Contrary to the traditional models that design a neural network that learns a classifier or a regressor, we propose a learning objective based on the nDCG ranking metric. We have experimentally evaluated the performance of the method in two different tasks: date estimation and date-sensitive image retrieval, using the DEW public database, overcoming the baseline methods. |
|
|
Address |
Lausanne; Suissa; September 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.121; 600.140; 110.312 |
Approved |
no |
|
|
Call Number |
Admin @ si @ MRG2021b |
Serial |
3571 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Adria Molina; Lluis Gomez; Oriol Ramos Terrades; Josep Llados |
|
|
Title |
Learning to Rank Words: Optimizing Ranking Metrics for Word Spotting |
Type |
Conference Article |
|
Year |
2021 |
Publication |
16th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
12822 |
Issue |
|
Pages |
381–395 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we explore and evaluate the use of ranking-based objective functions for learning simultaneously a word string and a word image encoder. We consider retrieval frameworks in which the user expects a retrieval list ranked according to a defined relevance score. In the context of a word spotting problem, the relevance score has been set according to the string edit distance from the query string. We experimentally demonstrate the competitive performance of the proposed model on query-by-string word spotting for both, handwritten and real scene word images. We also provide the results for query-by-example word spotting, although it is not the main focus of this work. |
|
|
Address |
Lausanne; Suissa; September 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.121; 600.140; 110.312 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RMG2021 |
Serial |
3572 |
|
Permanent link to this record |
|
|
|
|
Author |
Sanket Biswas; Pau Riba; Josep Llados; Umapada Pal |
|
|
Title |
DocSynth: A Layout Guided Approach for Controllable Document Image Synthesis |
Type |
Conference Article |
|
Year |
2021 |
Publication |
16th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
12823 |
Issue |
|
Pages |
555–568 |
|
|
Keywords |
|
|
|
Abstract |
Despite significant progress on current state-of-the-art image generation models, synthesis of document images containing multiple and complex object layouts is a challenging task. This paper presents a novel approach, called DocSynth, to automatically synthesize document images based on a given layout. In this work, given a spatial layout (bounding boxes with object categories) as a reference by the user, our proposed DocSynth model learns to generate a set of realistic document images consistent with the defined layout. Also, this framework has been adapted to this work as a superior baseline model for creating synthetic document image datasets for augmenting real data during training for document layout analysis tasks. Different sets of learning objectives have been also used to improve the model performance. Quantitatively, we also compare the generated results of our model with real data using standard evaluation metrics. The results highlight that our model can successfully generate realistic and diverse document images with multiple objects. We also present a comprehensive qualitative analysis summary of the different scopes of synthetic image generation tasks. Lastly, to our knowledge this is the first work of its kind. |
|
|
Address |
Lausanne; Suissa; September 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121; 600.140; 110.312 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BRL2021a |
Serial |
3573 |
|
Permanent link to this record |
|
|
|
|
Author |
Mohamed Ali Souibgui; Ali Furkan Biten; Sounak Dey; Alicia Fornes; Yousri Kessentini; Lluis Gomez; Dimosthenis Karatzas; Josep Llados |
|
|
Title |
One-shot Compositional Data Generation for Low Resource Handwritten Text Recognition |
Type |
Conference Article |
|
Year |
2022 |
Publication |
Winter Conference on Applications of Computer Vision |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Document Analysis |
|
|
Abstract |
Low resource Handwritten Text Recognition (HTR) is a hard problem due to the scarce annotated data and the very limited linguistic information (dictionaries and language models). This appears, for example, in the case of historical ciphered manuscripts, which are usually written with invented alphabets to hide the content. Thus, in this paper we address this problem through a data generation technique based on Bayesian Program Learning (BPL). Contrary to traditional generation approaches, which require a huge amount of annotated images, our method is able to generate human-like handwriting using only one sample of each symbol from the desired alphabet. After generating symbols, we create synthetic lines to train state-of-the-art HTR architectures in a segmentation free fashion. Quantitative and qualitative analyses were carried out and confirm the effectiveness of the proposed method, achieving competitive results compared to the usage of real annotated data. |
|
|
Address |
Virtual; January 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
WACV |
|
|
Notes |
DAG; 602.230; 600.140 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SBD2022 |
Serial |
3615 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Torras; Arnau Baro; Lei Kang; Alicia Fornes |
|
|
Title |
On the Integration of Language Models into Sequence to Sequence Architectures for Handwritten Music Recognition |
Type |
Conference Article |
|
Year |
2021 |
Publication |
International Society for Music Information Retrieval Conference |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
690-696 |
|
|
Keywords |
|
|
|
Abstract |
Despite the latest advances in Deep Learning, the recognition of handwritten music scores is still a challenging endeavour. Even though the recent Sequence to Sequence(Seq2Seq) architectures have demonstrated its capacity to reliably recognise handwritten text, their performance is still far from satisfactory when applied to historical handwritten scores. Indeed, the ambiguous nature of handwriting, the non-standard musical notation employed by composers of the time and the decaying state of old paper make these scores remarkably difficult to read, sometimes even by trained humans. Thus, in this work we explore the incorporation of language models into a Seq2Seq-based architecture to try to improve transcriptions where the aforementioned unclear writing produces statistically unsound mistakes, which as far as we know, has never been attempted for this field of research on this architecture. After studying various Language Model integration techniques, the experimental evaluation on historical handwritten music scores shows a significant improvement over the state of the art, showing that this is a promising research direction for dealing with such difficult manuscripts. |
|
|
Address |
Virtual; November 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ISMIR |
|
|
Notes |
DAG; 600.140; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TBK2021 |
Serial |
3616 |
|
Permanent link to this record |
|
|
|
|
Author |
Jialuo Chen; Mohamed Ali Souibgui; Alicia Fornes; Beata Megyesi |
|
|
Title |
Unsupervised Alphabet Matching in Historical Encrypted Manuscript Images |
Type |
Conference Article |
|
Year |
2021 |
Publication |
4th International Conference on Historical Cryptology |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
34-37 |
|
|
Keywords |
|
|
|
Abstract |
Historical ciphers contain a wide range ofsymbols from various symbol sets. Iden-tifying the cipher alphabet is a prerequi-site before decryption can take place andis a time-consuming process. In this workwe explore the use of image processing foridentifying the underlying alphabet in ci-pher images, and to compare alphabets be-tween ciphers. The experiments show thatciphers with similar alphabets can be suc-cessfully discovered through clustering. |
|
|
Address |
Virtual; September 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
HistoCrypt |
|
|
Notes |
DAG; 602.230; 600.140; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ CSF2021 |
Serial |
3617 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Torras; Mohamed Ali Souibgui; Jialuo Chen; Alicia Fornes |
|
|
Title |
A Transcription Is All You Need: Learning to Align through Attention |
Type |
Conference Article |
|
Year |
2021 |
Publication |
14th IAPR International Workshop on Graphics Recognition |
Abbreviated Journal |
|
|
|
Volume |
12916 |
Issue |
|
Pages |
141–146 |
|
|
Keywords |
|
|
|
Abstract |
Historical ciphered manuscripts are a type of document where graphical symbols are used to encrypt their content instead of regular text. Nowadays, expert transcriptions can be found in libraries alongside the corresponding manuscript images. However, those transcriptions are not aligned, so these are barely usable for training deep learning-based recognition methods. To solve this issue, we propose a method to align each symbol in the transcript of an image with its visual representation by using an attention-based Sequence to Sequence (Seq2Seq) model. The core idea is that, by learning to recognise symbols sequence within a cipher line image, the model also identifies their position implicitly through an attention mechanism. Thus, the resulting symbol segmentation can be later used for training algorithms. The experimental evaluation shows that this method is promising, especially taking into account the small size of the cipher dataset. |
|
|
Address |
Virtual; September 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG; 602.230; 600.140; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TSC2021 |
Serial |
3619 |
|
Permanent link to this record |
|
|
|
|
Author |
Ruben Tito; Dimosthenis Karatzas; Ernest Valveny |
|
|
Title |
Document Collection Visual Question Answering |
Type |
Conference Article |
|
Year |
2021 |
Publication |
16th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
12822 |
Issue |
|
Pages |
778-792 |
|
|
Keywords |
Document collection; Visual Question Answering |
|
|
Abstract |
Current tasks and methods in Document Understanding aims to process documents as single elements. However, documents are usually organized in collections (historical records, purchase invoices), that provide context useful for their interpretation. To address this problem, we introduce Document Collection Visual Question Answering (DocCVQA) a new dataset and related task, where questions are posed over a whole collection of document images and the goal is not only to provide the answer to the given question, but also to retrieve the set of documents that contain the information needed to infer the answer. Along with the dataset we propose a new evaluation metric and baselines which provide further insights to the new dataset and task. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TKV2021 |
Serial |
3622 |
|
Permanent link to this record |
|
|
|
|
Author |
Ruben Tito; Minesh Mathew; C.V. Jawahar; Ernest Valveny; Dimosthenis Karatzas |
|
|
Title |
ICDAR 2021 Competition on Document Visual Question Answering |
Type |
Conference Article |
|
Year |
2021 |
Publication |
16th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
635-649 |
|
|
Keywords |
|
|
|
Abstract |
In this report we present results of the ICDAR 2021 edition of the Document Visual Question Challenges. This edition complements the previous tasks on Single Document VQA and Document Collection VQA with a newly introduced on Infographics VQA. Infographics VQA is based on a new dataset of more than 5, 000 infographics images and 30, 000 question-answer pairs. The winner methods have scored 0.6120 ANLS in Infographics VQA task, 0.7743 ANLSL in Document Collection VQA task and 0.8705 ANLS in Single Document VQA. We present a summary of the datasets used for each task, description of each of the submitted methods and the results and analysis of their performance. A summary of the progress made on Single Document VQA since the first edition of the DocVQA 2020 challenge is also presented. |
|
|
Address |
VIRTUAL; Lausanne; Suissa; September 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TMJ2021 |
Serial |
3624 |
|
Permanent link to this record |