|
Records |
Links |
|
Author |
Ruben Tito; Minesh Mathew; C.V. Jawahar; Ernest Valveny; Dimosthenis Karatzas |
|
|
Title |
ICDAR 2021 Competition on Document Visual Question Answering |
Type |
Conference Article |
|
Year |
2021 |
Publication |
16th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
635-649 |
|
|
Keywords |
|
|
|
Abstract |
In this report we present results of the ICDAR 2021 edition of the Document Visual Question Challenges. This edition complements the previous tasks on Single Document VQA and Document Collection VQA with a newly introduced on Infographics VQA. Infographics VQA is based on a new dataset of more than 5, 000 infographics images and 30, 000 question-answer pairs. The winner methods have scored 0.6120 ANLS in Infographics VQA task, 0.7743 ANLSL in Document Collection VQA task and 0.8705 ANLS in Single Document VQA. We present a summary of the datasets used for each task, description of each of the submitted methods and the results and analysis of their performance. A summary of the progress made on Single Document VQA since the first edition of the DocVQA 2020 challenge is also presented. |
|
|
Address |
VIRTUAL; Lausanne; Suissa; September 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TMJ2021 |
Serial |
3624 |
|
Permanent link to this record |
|
|
|
|
Author |
Minesh Mathew; Viraj Bagal; Ruben Tito; Dimosthenis Karatzas; Ernest Valveny; C.V. Jawahar |
|
|
Title |
InfographicVQA |
Type |
Conference Article |
|
Year |
2022 |
Publication |
Winter Conference on Applications of Computer Vision |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1697-1706 |
|
|
Keywords |
Document Analysis Datasets; Evaluation and Comparison of Vision Algorithms; Vision and Languages |
|
|
Abstract |
Infographics communicate information using a combination of textual, graphical and visual elements. This work explores the automatic understanding of infographic images by using a Visual Question Answering technique. To this end, we present InfographicVQA, a new dataset comprising a diverse collection of infographics and question-answer annotations. The questions require methods that jointly reason over the document layout, textual content, graphical elements, and data visualizations. We curate the dataset with an emphasis on questions that require elementary reasoning and basic arithmetic skills. For VQA on the dataset, we evaluate two Transformer-based strong baselines. Both the baselines yield unsatisfactory results compared to near perfect human performance on the dataset. The results suggest that VQA on infographics--images that are designed to communicate information quickly and clearly to human brain--is ideal for benchmarking machine understanding of complex document images. The dataset is available for download at docvqa. org |
|
|
Address |
Virtual; Waikoloa; Hawai; USA; January 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
WACV |
|
|
Notes |
DAG; 600.155 |
Approved |
no |
|
|
Call Number |
MBT2022 |
Serial |
3625 |
|
Permanent link to this record |
|
|
|
|
Author |
Ali Furkan Biten; Lluis Gomez; Dimosthenis Karatzas |
|
|
Title |
Let there be a clock on the beach: Reducing Object Hallucination in Image Captioning |
Type |
Conference Article |
|
Year |
2022 |
Publication |
Winter Conference on Applications of Computer Vision |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1381-1390 |
|
|
Keywords |
Measurement; Training; Visualization; Analytical models; Computer vision; Computational modeling; Training data |
|
|
Abstract |
Explaining an image with missing or non-existent objects is known as object bias (hallucination) in image captioning. This behaviour is quite common in the state-of-the-art captioning models which is not desirable by humans. To decrease the object hallucination in captioning, we propose three simple yet efficient training augmentation method for sentences which requires no new training data or increase
in the model size. By extensive analysis, we show that the proposed methods can significantly diminish our models’ object bias on hallucination metrics. Moreover, we experimentally demonstrate that our methods decrease the dependency on the visual features. All of our code, configuration files and model weights are available online. |
|
|
Address |
Virtual; Waikoloa; Hawai; USA; January 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
WACV |
|
|
Notes |
DAG; 600.155; 302.105 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BGK2022 |
Serial |
3662 |
|
Permanent link to this record |
|
|
|
|
Author |
Ali Furkan Biten; Andres Mafla; Lluis Gomez; Dimosthenis Karatzas |
|
|
Title |
Is An Image Worth Five Sentences? A New Look into Semantics for Image-Text Matching |
Type |
Conference Article |
|
Year |
2022 |
Publication |
Winter Conference on Applications of Computer Vision |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1391-1400 |
|
|
Keywords |
Measurement; Training; Integrated circuits; Annotations; Semantics; Training data; Semisupervised learning |
|
|
Abstract |
The task of image-text matching aims to map representations from different modalities into a common joint visual-textual embedding. However, the most widely used datasets for this task, MSCOCO and Flickr30K, are actually image captioning datasets that offer a very limited set of relationships between images and sentences in their ground-truth annotations. This limited ground truth information forces us to use evaluation metrics based on binary relevance: given a sentence query we consider only one image as relevant. However, many other relevant images or captions may be present in the dataset. In this work, we propose two metrics that evaluate the degree of semantic relevance of retrieved items, independently of their annotated binary relevance. Additionally, we incorporate a novel strategy that uses an image captioning metric, CIDEr, to define a Semantic Adaptive Margin (SAM) to be optimized in a standard triplet loss. By incorporating our formulation to existing models, a large improvement is obtained in scenarios where available training data is limited. We also demonstrate that the performance on the annotated image-caption pairs is maintained while improving on other non-annotated relevant items when employing the full training set. The code for our new metric can be found at github. com/furkanbiten/ncsmetric and the model implementation at github. com/andrespmd/semanticadaptive_margin. |
|
|
Address |
Virtual; Waikoloa; Hawai; USA; January 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
WACV |
|
|
Notes |
DAG; 600.155; 302.105; |
Approved |
no |
|
|
Call Number |
Admin @ si @ BMG2022 |
Serial |
3663 |
|
Permanent link to this record |
|
|
|
|
Author |
Albert Suso; Pau Riba; Oriol Ramos Terrades; Josep Llados |
|
|
Title |
A Self-supervised Inverse Graphics Approach for Sketch Parametrization |
Type |
Conference Article |
|
Year |
2021 |
Publication |
16th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
12916 |
Issue |
|
Pages |
28-42 |
|
|
Keywords |
|
|
|
Abstract |
The study of neural generative models of handwritten text and human sketches is a hot topic in the computer vision field. The landmark SketchRNN provided a breakthrough by sequentially generating sketches as a sequence of waypoints, and more recent articles have managed to generate fully vector sketches by coding the strokes as Bézier curves. However, the previous attempts with this approach need them all a ground truth consisting in the sequence of points that make up each stroke, which seriously limits the datasets the model is able to train in. In this work, we present a self-supervised end-to-end inverse graphics approach that learns to embed each image to its best fit of Bézier curves. The self-supervised nature of the training process allows us to train the model in a wider range of datasets, but also to perform better after-training predictions by applying an overfitting process on the input binary image. We report qualitative an quantitative evaluations on the MNIST and the Quick, Draw! datasets. |
|
|
Address |
Lausanne; Suissa; September 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SRR2021 |
Serial |
3675 |
|
Permanent link to this record |
|
|
|
|
Author |
Sanket Biswas; Pau Riba; Josep Llados; Umapada Pal |
|
|
Title |
Graph-Based Deep Generative Modelling for Document Layout Generation |
Type |
Conference Article |
|
Year |
2021 |
Publication |
16th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
12917 |
Issue |
|
Pages |
525-537 |
|
|
Keywords |
|
|
|
Abstract |
One of the major prerequisites for any deep learning approach is the availability of large-scale training data. When dealing with scanned document images in real world scenarios, the principal information of its content is stored in the layout itself. In this work, we have proposed an automated deep generative model using Graph Neural Networks (GNNs) to generate synthetic data with highly variable and plausible document layouts that can be used to train document interpretation systems, in this case, specially in digital mailroom applications. It is also the first graph-based approach for document layout generation task experimented on administrative document images, in this case, invoices. |
|
|
Address |
Lausanne; Suissa; September 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121; 600.140; 110.312 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BRL2021 |
Serial |
3676 |
|
Permanent link to this record |
|
|
|
|
Author |
Josep Llados |
|
|
Title |
The 5G of Document Intelligence |
Type |
Conference Article |
|
Year |
2021 |
Publication |
3rd Workshop on Future of Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Lausanne; Suissa; September 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
FDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ |
Serial |
3677 |
|
Permanent link to this record |
|
|
|
|
Author |
Mohamed Ali Souibgui; Sanket Biswas; Sana Khamekhem Jemni; Yousri Kessentini; Alicia Fornes; Josep Llados; Umapada Pal |
|
|
Title |
DocEnTr: An End-to-End Document Image Enhancement Transformer |
Type |
Conference Article |
|
Year |
2022 |
Publication |
26th International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1699-1705 |
|
|
Keywords |
Degradation; Head; Optical character recognition; Self-supervised learning; Benchmark testing; Transformers; Magnetic heads |
|
|
Abstract |
Document images can be affected by many degradation scenarios, which cause recognition and processing difficulties. In this age of digitization, it is important to denoise them for proper usage. To address this challenge, we present a new encoder-decoder architecture based on vision transformers to enhance both machine-printed and handwritten document images, in an end-to-end fashion. The encoder operates directly on the pixel patches with their positional information without the use of any convolutional layers, while the decoder reconstructs a clean image from the encoded patches. Conducted experiments show a superiority of the proposed model compared to the state-of the-art methods on several DIBCO benchmarks. Code and models will be publicly available at: https://github.com/dali92002/DocEnTR |
|
|
Address |
August 21-25, 2022 , Montréal Québec |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG; 600.121; 600.162; 602.230; 600.140 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SBJ2022 |
Serial |
3730 |
|
Permanent link to this record |
|
|
|
|
Author |
Adria Molina; Lluis Gomez; Oriol Ramos Terrades; Josep Llados |
|
|
Title |
A Generic Image Retrieval Method for Date Estimation of Historical Document Collections |
Type |
Conference Article |
|
Year |
2022 |
Publication |
Document Analysis Systems.15th IAPR International Workshop, (DAS2022) |
Abbreviated Journal |
|
|
|
Volume |
13237 |
Issue |
|
Pages |
583–597 |
|
|
Keywords |
Date estimation; Document retrieval; Image retrieval; Ranking loss; Smooth-nDCG |
|
|
Abstract |
Date estimation of historical document images is a challenging problem, with several contributions in the literature that lack of the ability to generalize from one dataset to others. This paper presents a robust date estimation system based in a retrieval approach that generalizes well in front of heterogeneous collections. We use a ranking loss function named smooth-nDCG to train a Convolutional Neural Network that learns an ordination of documents for each problem. One of the main usages of the presented approach is as a tool for historical contextual retrieval. It means that scholars could perform comparative analysis of historical images from big datasets in terms of the period where they were produced. We provide experimental evaluation on different types of documents from real datasets of manuscript and newspaper images. |
|
|
Address |
La Rochelle, France; May 22–25, 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DAS |
|
|
Notes |
DAG; 600.140; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ MGR2022 |
Serial |
3694 |
|
Permanent link to this record |
|
|
|
|
Author |
Josep Brugues Pujolras; Lluis Gomez; Dimosthenis Karatzas |
|
|
Title |
A Multilingual Approach to Scene Text Visual Question Answering |
Type |
Conference Article |
|
Year |
2022 |
Publication |
Document Analysis Systems.15th IAPR International Workshop, (DAS2022) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
65-79 |
|
|
Keywords |
Scene text; Visual question answering; Multilingual word embeddings; Vision and language; Deep learning |
|
|
Abstract |
Scene Text Visual Question Answering (ST-VQA) has recently emerged as a hot research topic in Computer Vision. Current ST-VQA models have a big potential for many types of applications but lack the ability to perform well on more than one language at a time due to the lack of multilingual data, as well as the use of monolingual word embeddings for training. In this work, we explore the possibility to obtain bilingual and multilingual VQA models. In that regard, we use an already established VQA model that uses monolingual word embeddings as part of its pipeline and substitute them by FastText and BPEmb multilingual word embeddings that have been aligned to English. Our experiments demonstrate that it is possible to obtain bilingual and multilingual VQA models with a minimal loss in performance in languages not used during training, as well as a multilingual model trained in multiple languages that match the performance of the respective monolingual baselines. |
|
|
Address |
La Rochelle, France; May 22–25, 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DAS |
|
|
Notes |
DAG; 611.004; 600.155; 601.002 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BGK2022b |
Serial |
3695 |
|
Permanent link to this record |