|
Records |
Links |
|
Author |
Lluis Pere de las Heras; Joan Mas; Gemma Sanchez; Ernest Valveny |


|
|
Title |
Notation-invariant patch-based wall detector in architectural floor plans |
Type  |
Book Chapter |
|
Year |
2013 |
Publication |
Graphics Recognition. New Trends and Challenges |
Abbreviated Journal |
|
|
|
Volume |
7423 |
Issue |
|
Pages |
79--88 |
|
|
Keywords |
|
|
|
Abstract |
Architectural floor plans exhibit a large variability in notation. Therefore, segmenting and identifying the elements of any kind of plan becomes a challenging task for approaches based on grouping structural primitives obtained by vectorization. Recently, a patch-based segmentation method working at pixel level and relying on the construction of a visual vocabulary has been proposed in [1], showing its adaptability to different notations by automatically learning the visual appearance of the elements in each different notation. This paper presents an evolution of that previous work, after analyzing and testing several alternatives for each of the different steps of the method: Firstly, an automatic plan-size normalization process is done. Secondly we evaluate different features to obtain the description of every patch. Thirdly, we train an SVM classifier to obtain the category of every patch instead of constructing a visual vocabulary. These variations of the method have been tested for wall detection on two datasets of architectural floor plans with different notations. After studying in deep each of the steps in the process pipeline, we are able to find the best system configuration, which highly outperforms the results on wall segmentation obtained by the original paper. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-642-36823-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.045; 600.056; 605.203 |
Approved |
no |
|
|
Call Number |
Admin @ si @ HMS2013 |
Serial |
2322 |
|
Permanent link to this record |
|
|
|
|
Author |
Muhammad Muzzamil Luqman; Jean-Yves Ramel; Josep Llados |


|
|
Title |
Multilevel Analysis of Attributed Graphs for Explicit Graph Embedding in Vector Spaces |
Type  |
Book Chapter |
|
Year |
2013 |
Publication |
Graph Embedding for Pattern Analysis |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1-26 |
|
|
Keywords |
|
|
|
Abstract |
Ability to recognize patterns is among the most crucial capabilities of human beings for their survival, which enables them to employ their sophisticated neural and cognitive systems [1], for processing complex audio, visual, smell, touch, and taste signals. Man is the most complex and the best existing system of pattern recognition. Without any explicit thinking, we continuously compare, classify, and identify huge amount of signal data everyday [2], starting from the time we get up in the morning till the last second we fall asleep. This includes recognizing the face of a friend in a crowd, a spoken word embedded in noise, the proper key to lock the door, smell of coffee, the voice of a favorite singer, the recognition of alphabetic characters, and millions of more tasks that we perform on regular basis. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer New York |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-1-4614-4456-5 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ LRL2013b |
Serial |
2271 |
|
Permanent link to this record |
|
|
|
|
Author |
Joan Mas; Gemma Sanchez; Josep Llados |


|
|
Title |
SSP: Sketching slide Presentations, a Syntactic Approach |
Type  |
Book Chapter |
|
Year |
2010 |
Publication |
Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers |
Abbreviated Journal |
|
|
|
Volume |
6020 |
Issue |
|
Pages |
118-129 |
|
|
Keywords |
|
|
|
Abstract |
The design of a slide presentation is a creative process. In this process first, humans visualize in their minds what they want to explain. Then, they have to be able to represent this knowledge in an understandable way. There exists a lot of commercial software that allows to create our own slide presentations but the creativity of the user is rather limited. In this article we present an application that allows the user to create and visualize a slide presentation from a sketch. A slide may be seen as a graphical document or a diagram where its elements are placed in a particular spatial arrangement. To describe and recognize slides a syntactic approach is proposed. This approach is based on an Adjacency Grammar and a parsing methodology to cope with this kind of grammars. The experimental evaluation shows the performance of our methodology from a qualitative and a quantitative point of view. Six different slides containing different number of symbols, from 4 to 7, have been given to the users and they have drawn them without restrictions in the order of the elements. The quantitative results give an idea on how suitable is our methodology to describe and recognize the different elements in a slide. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-642-13727-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
MSL2010 |
Serial |
2405 |
|
Permanent link to this record |
|
|
|
|
Author |
Mathieu Nicolas Delalandre; Jean-Yves Ramel; Ernest Valveny; Muhammad Muzzamil Luqman |


|
|
Title |
A Performance Characterization Algorithm for Symbol Localization |
Type  |
Book Chapter |
|
Year |
2010 |
Publication |
Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers |
Abbreviated Journal |
|
|
|
Volume |
6020 |
Issue |
|
Pages |
260–271 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we present an algorithm for performance characterization of symbol localization systems. This algorithm is aimed to be a more “reliable” and “open” solution to characterize the performance. To achieve that, it exploits only single points as the result of localization and offers the possibility to reconsider the localization results provided by a system. We use the information about context in groundtruth, and overall localization results, to detect the ambiguous localization results. A probability score is computed for each matching between a localization point and a groundtruth region, depending on the spatial distribution of the other regions in the groundtruth. Final characterization is given with detection rate/probability score plots, describing the sets of possible interpretations of the localization results, according to a given confidence rate. We present experimentation details along with the results for the symbol localization system of [1], exploiting a synthetic dataset of architectural floorplans and electrical diagrams (composed of 200 images and 3861 symbols). |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-642-13727-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ DRV2010 |
Serial |
2406 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; K. Bertet; Jean-Marc Ogier; Josep Llados |


|
|
Title |
Symbol Recognition Using a Concept Lattice of Graphical Patterns |
Type  |
Book Chapter |
|
Year |
2010 |
Publication |
Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers |
Abbreviated Journal |
|
|
|
Volume |
6020 |
Issue |
|
Pages |
187-198 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we propose a new approach to recognize symbols by the use of a concept lattice. We propose to build a concept lattice in terms of graphical patterns. Each model symbol is decomposed in a set of composing graphical patterns taken as primitives. Each one of these primitives is described by boundary moment invariants. The obtained concept lattice relates which symbolic patterns compose a given graphical symbol. A Hasse diagram is derived from the context and is used to recognize symbols affected by noise. We present some preliminary results over a variation of the dataset of symbols from the GREC 2005 symbol recognition contest. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-642-13727-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ RBO2010 |
Serial |
2407 |
|
Permanent link to this record |
|
|
|
|
Author |
Partha Pratim Roy; Umapada Pal; Josep Llados |


|
|
Title |
Touching Text Character Localization in Graphical Documents using SIFT |
Type  |
Book Chapter |
|
Year |
2010 |
Publication |
Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers |
Abbreviated Journal |
|
|
|
Volume |
6020 |
Issue |
|
Pages |
199-211 |
|
|
Keywords |
Support Vector Machine; Text Component; Graphical Line; Document Image; Scale Invariant Feature Transform |
|
|
Abstract |
Interpretation of graphical document images is a challenging task as it requires proper understanding of text/graphics symbols present in such documents. Difficulties arise in graphical document recognition when text and symbol overlapped/touched. Intersection of text and symbols with graphical lines and curves occur frequently in graphical documents and hence separation of such symbols is very difficult.
Several pattern recognition and classification techniques exist to recognize isolated text/symbol. But, the touching/overlapping text and symbol recognition has not yet been dealt successfully. An interesting technique, Scale Invariant Feature Transform (SIFT), originally devised for object recognition can take care of overlapping problems. Even if SIFT features have emerged as a very powerful object descriptors, their employment in graphical documents context has not been investigated much. In this paper we present the adaptation of the SIFT approach in the context of text character localization (spotting) in graphical documents. We evaluate the applicability of this technique in such documents and discuss the scope of improvement by combining some state-of-the-art approaches. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-642-13727-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ RPL2010c |
Serial |
2408 |
|
Permanent link to this record |
|
|
|
|
Author |
Miquel Ferrer; I. Bardaji; Ernest Valveny; Dimosthenis Karatzas; Horst Bunke |


|
|
Title |
Median Graph Computation by Means of Graph Embedding into Vector Spaces |
Type  |
Book Chapter |
|
Year |
2013 |
Publication |
Graph Embedding for Pattern Analysis |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
45-72 |
|
|
Keywords |
|
|
|
Abstract |
In pattern recognition [8, 14], a key issue to be addressed when designing a system is how to represent input patterns. Feature vectors is a common option. That is, a set of numerical features describing relevant properties of the pattern are computed and arranged in a vector form. The main advantages of this kind of representation are computational simplicity and a well sound mathematical foundation. Thus, a large number of operations are available to work with vectors and a large repository of algorithms for pattern analysis and classification exist. However, the simple structure of feature vectors might not be the best option for complex patterns where nonnumerical features or relations between different parts of the pattern become relevant. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer New York |
Place of Publication |
|
Editor |
Yun Fu; Yungian Ma |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-1-4614-4456-5 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ FBV2013 |
Serial |
2421 |
|
Permanent link to this record |
|
|
|
|
Author |
A.Kesidis; Dimosthenis Karatzas |


|
|
Title |
Logo and Trademark Recognition |
Type  |
Book Chapter |
|
Year |
2014 |
Publication |
Handbook of Document Image Processing and Recognition |
Abbreviated Journal |
|
|
|
Volume |
D |
Issue |
|
Pages |
591-646 |
|
|
Keywords |
Logo recognition; Logo removal; Logo spotting; Trademark registration; Trademark retrieval systems |
|
|
Abstract |
The importance of logos and trademarks in nowadays society is indisputable, variably seen under a positive light as a valuable service for consumers or a negative one as a catalyst of ever-increasing consumerism. This chapter discusses the technical approaches for enabling machines to work with logos, looking into the latest methodologies for logo detection, localization, representation, recognition, retrieval, and spotting in a variety of media. This analysis is presented in the context of three different applications covering the complete depth and breadth of state of the art techniques. These are trademark retrieval systems, logo recognition in document images, and logo detection and removal in images and videos. This chapter, due to the very nature of logos and trademarks, brings together various facets of document image analysis spanning graphical and textual content, while it links document image analysis to other computer vision domains, especially when it comes to the analysis of real-scene videos and images. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer London |
Place of Publication |
|
Editor |
D. Doermann; K. Tombre |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-0-85729-858-4 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ KeK2014 |
Serial |
2425 |
|
Permanent link to this record |
|
|
|
|
Author |
Alicia Fornes; Gemma Sanchez |


|
|
Title |
Analysis and Recognition of Music Scores |
Type  |
Book Chapter |
|
Year |
2014 |
Publication |
Handbook of Document Image Processing and Recognition |
Abbreviated Journal |
|
|
|
Volume |
E |
Issue |
|
Pages |
749-774 |
|
|
Keywords |
|
|
|
Abstract |
The analysis and recognition of music scores has attracted the interest of researchers for decades. Optical Music Recognition (OMR) is a classical research field of Document Image Analysis and Recognition (DIAR), whose aim is to extract information from music scores. Music scores contain both graphical and textual information, and for this reason, techniques are closely related to graphics recognition and text recognition. Since music scores use a particular diagrammatic notation that follow the rules of music theory, many approaches make use of context information to guide the recognition and solve ambiguities. This chapter overviews the main Optical Music Recognition (OMR) approaches. Firstly, the different methods are grouped according to the OMR stages, namely, staff removal, music symbol recognition, and syntactical analysis. Secondly, specific approaches for old and handwritten music scores are reviewed. Finally, online approaches and commercial systems are also commented. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer London |
Place of Publication |
|
Editor |
D. Doermann; K. Tombre |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-0-85729-860-7 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; ADAS; 600.076; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ FoS2014 |
Serial |
2484 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Pere de las Heras; Ernest Valveny; Gemma Sanchez |


|
|
Title |
Unsupervised and Notation-Independent Wall Segmentation in Floor Plans Using a Combination of Statistical and Structural Strategies |
Type  |
Book Chapter |
|
Year |
2014 |
Publication |
Graphics Recognition. Current Trends and Challenges |
Abbreviated Journal |
|
|
|
Volume |
8746 |
Issue |
|
Pages |
109-121 |
|
|
Keywords |
Graphics recognition; Floor plan analysis; Object segmentation |
|
|
Abstract |
In this paper we present a wall segmentation approach in floor plans that is able to work independently to the graphical notation, does not need any pre-annotated data for learning, and is able to segment multiple-shaped walls such as beams and curved-walls. This method results from the combination of the wall segmentation approaches [3, 5] presented recently by the authors. Firstly, potential straight wall segments are extracted in an unsupervised way similar to [3], but restricting even more the wall candidates considered in the original approach. Then, based on [5], these segments are used to learn the texture pattern of walls and spot the lost instances. The presented combination of both methods has been tested on 4 available datasets with different notations and compared qualitatively and quantitatively to the state-of-the-art applied on these collections. Additionally, some qualitative results on floor plans directly downloaded from the Internet are reported in the paper. The overall performance of the method demonstrates either its adaptability to different wall notations and shapes, and to document qualities and resolutions. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-662-44853-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; ADAS; 600.076; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ HVS2014 |
Serial |
2535 |
|
Permanent link to this record |