toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Weijia Wu; Yuzhong Zhao; Zhuang Li; Jiahong Li; Mike Zheng Shou; Umapada Pal; Dimosthenis Karatzas; Xiang Bai edit   pdf
url  openurl
  Title (up) ICDAR 2023 Competition on Video Text Reading for Dense and Small Text Type Conference Article
  Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14188 Issue Pages 405–419  
  Keywords Video Text Spotting; Small Text; Text Tracking; Dense Text  
  Abstract Recently, video text detection, tracking and recognition in natural scenes are becoming very popular in the computer vision community. However, most existing algorithms and benchmarks focus on common text cases (e.g., normal size, density) and single scenario, while ignore extreme video texts challenges, i.e., dense and small text in various scenarios. In this competition report, we establish a video text reading benchmark, named DSText, which focuses on dense and small text reading challenge in the video with various scenarios. Compared with the previous datasets, the proposed dataset mainly include three new challenges: 1) Dense video texts, new challenge for video text spotter. 2) High-proportioned small texts. 3) Various new scenarios, e.g., ‘Game’, ‘Sports’, etc. The proposed DSText includes 100 video clips from 12 open scenarios, supporting two tasks (i.e., video text tracking (Task 1) and end-to-end video text spotting (Task2)). During the competition period (opened on 15th February, 2023 and closed on 20th March, 2023), a total of 24 teams participated in the three proposed tasks with around 30 valid submissions, respectively. In this article, we describe detailed statistical information of the dataset, tasks, evaluation protocols and the results summaries of the ICDAR 2023 on DSText competition. Moreover, we hope the benchmark will promise the video text research in the community.  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ WZL2023 Serial 3898  
Permanent link to this record
 

 
Author Jean-Christophe Burie; J. Chazalon; M. Coustaty; S. Eskenazi; Muhammad Muzzamil Luqman; M. Mehri; Nibal Nayef; Jean-Marc Ogier; S. Prum; Marçal Rusiñol edit  url
doi  openurl
  Title (up) ICDAR2015 Competition on Smartphone Document Capture and OCR (SmartDoc) Type Conference Article
  Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 1161 - 1165  
  Keywords  
  Abstract Smartphones are enabling new ways of capture,
hence arises the need for seamless and reliable acquisition and
digitization of documents, in order to convert them to editable,
searchable and a more human-readable format. Current stateof-the-art
works lack databases and baseline benchmarks for
digitizing mobile captured documents. We have organized a
competition for mobile document capture and OCR in order to
address this issue. The competition is structured into two independent
challenges: smartphone document capture, and smartphone
OCR. This report describes the datasets for both challenges
along with their ground truth, details the performance evaluation
protocols which we used, and presents the final results of the
participating methods. In total, we received 13 submissions: 8
for challenge-I, and 5 for challenge-2.
 
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.077; 601.223; 600.084 Approved no  
  Call Number Admin @ si @ BCC2015 Serial 2681  
Permanent link to this record
 

 
Author Alicia Fornes; Veronica Romero; Arnau Baro; Juan Ignacio Toledo; Joan Andreu Sanchez; Enrique Vidal; Josep Llados edit   pdf
openurl 
  Title (up) ICDAR2017 Competition on Information Extraction in Historical Handwritten Records Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1389-1394  
  Keywords  
  Abstract The extraction of relevant information from historical handwritten document collections is one of the key steps in order to make these manuscripts available for access and searches. In this competition, the goal is to detect the named entities and assign each of them a semantic category, and therefore, to simulate the filling in of a knowledge database. This paper describes the dataset, the tasks, the evaluation metrics, the participants methods and the results.  
  Address Kyoto; Japan; November 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.097; 601.225; 600.121 Approved no  
  Call Number Admin @ si @ FRB2017 Serial 3052  
Permanent link to this record
 

 
Author Raul Gomez; Baoguang Shi; Lluis Gomez; Lukas Numann; Andreas Veit; Jiri Matas; Serge Belongie; Dimosthenis Karatzas edit  openurl
  Title (up) ICDAR2017 Robust Reading Challenge on COCO-Text Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Kyoto; Japan; November 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ GSG2017 Serial 3076  
Permanent link to this record
 

 
Author N. Nayef; F. Yin; I. Bizid; H .Choi; Y. Feng; Dimosthenis Karatzas; Z. Luo; Umapada Pal; Christophe Rigaud; J. Chazalon; W. Khlif; Muhammad Muzzamil Luqman; Jean-Christophe Burie; C.L. Liu; Jean-Marc Ogier edit  doi
isbn  openurl
  Title (up) ICDAR2017 Robust Reading Challenge on Multi-Lingual Scene Text Detection and Script Identification – RRC-MLT Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1454-1459  
  Keywords  
  Abstract Text detection and recognition in a natural environment are key components of many applications, ranging from business card digitization to shop indexation in a street. This competition aims at assessing the ability of state-of-the-art methods to detect Multi-Lingual Text (MLT) in scene images, such as in contents gathered from the Internet media and in modern cities where multiple cultures live and communicate together. This competition is an extension of the Robust Reading Competition (RRC) which has been held since 2003 both in ICDAR and in an online context. The proposed competition is presented as a new challenge of the RRC. The dataset built for this challenge largely extends the previous RRC editions in many aspects: the multi-lingual text, the size of the dataset, the multi-oriented text, the wide variety of scenes. The dataset is comprised of 18,000 images which contain text belonging to 9 languages. The challenge is comprised of three tasks related to text detection and script classification. We have received a total of 16 participations from the research and industrial communities. This paper presents the dataset, the tasks and the findings of this RRC-MLT challenge.  
  Address Kyoto; Japan; November 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-5386-3586-5 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ NYB2017 Serial 3097  
Permanent link to this record
 

 
Author Masakazu Iwamura; Naoyuki Morimoto; Keishi Tainaka; Dena Bazazian; Lluis Gomez; Dimosthenis Karatzas edit  doi
openurl 
  Title (up) ICDAR2017 Robust Reading Challenge on Omnidirectional Video Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Results of ICDAR 2017 Robust Reading Challenge on Omnidirectional Video are presented. This competition uses Downtown Osaka Scene Text (DOST) Dataset that was captured in Osaka, Japan with an omnidirectional camera. Hence, it consists of sequential images (videos) of different view angles. Regarding the sequential images as videos (video mode), two tasks of localisation and end-to-end recognition are prepared. Regarding them as a set of still images (still image mode), three tasks of localisation, cropped word recognition and end-to-end recognition are prepared. As the dataset has been captured in Japan, the dataset contains Japanese text but also include text consisting of alphanumeric characters (Latin text). Hence, a submitted result for each task is evaluated in three ways: using Japanese only ground truth (GT), using Latin only GT and using combined GTs of both. Finally, by the submission deadline, we have received two submissions in the text localisation task of the still image mode. We intend to continue the competition in the open mode. Expecting further submissions, in this report we provide baseline results in all the tasks in addition to the submissions from the community.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.084; 600.121 Approved no  
  Call Number Admin @ si @ IMT2017 Serial 3077  
Permanent link to this record
 

 
Author ChunYang; Xu Cheng Yin; Hong Yu; Dimosthenis Karatzas; Yu Cao edit  doi
isbn  openurl
  Title (up) ICDAR2017 Robust Reading Challenge on Text Extraction from Biomedical Literature Figures (DeTEXT) Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1444-1447  
  Keywords  
  Abstract Hundreds of millions of figures are available in the biomedical literature, representing important biomedical experimental evidence. Since text is a rich source of information in figures, automatically extracting such text may assist in the task of mining figure information and understanding biomedical documents. Unlike images in the open domain, biomedical figures present a variety of unique challenges. For example, biomedical figures typically have complex layouts, small font sizes, short text, specific text, complex symbols and irregular text arrangements. This paper presents the final results of the ICDAR 2017 Competition on Text Extraction from Biomedical Literature Figures (ICDAR2017 DeTEXT Competition), which aims at extracting (detecting and recognizing) text from biomedical literature figures. Similar to text extraction from scene images and web pictures, ICDAR2017 DeTEXT Competition includes three major tasks, i.e., text detection, cropped word recognition and end-to-end text recognition. Here, we describe in detail the data set, tasks, evaluation protocols and participants of this competition, and report the performance of the participating methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-5386-3586-5 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ YCY2017 Serial 3098  
Permanent link to this record
 

 
Author Zheng Huang; Kai Chen; Jianhua He; Xiang Bai; Dimosthenis Karatzas; Shijian Lu; CV Jawahar edit   pdf
url  doi
openurl 
  Title (up) ICDAR2019 Competition on Scanned Receipt OCR and Information Extraction Type Conference Article
  Year 2019 Publication 15th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1516-1520  
  Keywords  
  Abstract The ICDAR 2019 Challenge on “Scanned receipts OCR and key information extraction” (SROIE) covers important aspects related to the automated analysis of scanned receipts. The SROIE tasks play a key role in many document analysis systems and hold significant commercial potential. Although a lot of work has been published over the years on administrative document analysis, the community has advanced relatively slowly, as most datasets have been kept private. One of the key contributions of SROIE to the document analysis community is to offer a first, standardized dataset of 1000 whole scanned receipt images and annotations, as well as an evaluation procedure for such tasks. The Challenge is structured around three tasks, namely Scanned Receipt Text Localization (Task 1), Scanned Receipt OCR (Task 2) and Key Information Extraction from Scanned Receipts (Task 3). The competition opened on 10th February, 2019 and closed on 5th May, 2019. We received 29, 24 and 18 valid submissions received for the three competition tasks, respectively. This report presents the competition datasets, define the tasks and the evaluation protocols, offer detailed submission statistics, as well as an analysis of the submitted performance. While the tasks of text localization and recognition seem to be relatively easy to tackle, it is interesting to observe the variety of ideas and approaches proposed for the information extraction task. According to the submissions' performance we believe there is still margin for improving information extraction performance, although the current dataset would have to grow substantially in following editions. Given the success of the SROIE competition evidenced by the wide interest generated and the healthy number of submissions from academic, research institutes and industry over different countries, we consider that the SROIE competition can evolve into a useful resource for the community, drawing further attention and promoting research and development efforts in this field.  
  Address Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.129 Approved no  
  Call Number Admin @ si @ HCH2019 Serial 3338  
Permanent link to this record
 

 
Author Chee-Kheng Chng; Yuliang Liu; Yipeng Sun; Chun Chet Ng; Canjie Luo; Zihan Ni; ChuanMing Fang; Shuaitao Zhang; Junyu Han; Errui Ding; Jingtuo Liu; Dimosthenis Karatzas; Chee Seng Chan; Lianwen Jin edit   pdf
url  doi
openurl 
  Title (up) ICDAR2019 Robust Reading Challenge on Arbitrary-Shaped Text – RRC-ArT Type Conference Article
  Year 2019 Publication 15th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1571-1576  
  Keywords  
  Abstract This paper reports the ICDAR2019 Robust Reading Challenge on Arbitrary-Shaped Text – RRC-ArT that consists of three major challenges: i) scene text detection, ii) scene text recognition, and iii) scene text spotting. A total of 78 submissions from 46 unique teams/individuals were received for this competition. The top performing score of each challenge is as follows: i) T1 – 82.65%, ii) T2.1 – 74.3%, iii) T2.2 – 85.32%, iv) T3.1 – 53.86%, and v) T3.2 – 54.91%. Apart from the results, this paper also details the ArT dataset, tasks description, evaluation metrics and participants' methods. The dataset, the evaluation kit as well as the results are publicly available at the challenge website.  
  Address Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ CLS2019 Serial 3340  
Permanent link to this record
 

 
Author Nibal Nayef; Yash Patel; Michal Busta; Pinaki Nath Chowdhury; Dimosthenis Karatzas; Wafa Khlif; Jiri Matas; Umapada Pal; Jean-Christophe Burie; Cheng-lin Liu; Jean-Marc Ogier edit   pdf
url  doi
openurl 
  Title (up) ICDAR2019 Robust Reading Challenge on Multi-lingual Scene Text Detection and Recognition — RRC-MLT-2019 Type Conference Article
  Year 2019 Publication 15th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1582-1587  
  Keywords  
  Abstract With the growing cosmopolitan culture of modern cities, the need of robust Multi-Lingual scene Text (MLT) detection and recognition systems has never been more immense. With the goal to systematically benchmark and push the state-of-the-art forward, the proposed competition builds on top of the RRC-MLT-2017 with an additional end-to-end task, an additional language in the real images dataset, a large scale multi-lingual synthetic dataset to assist the training, and a baseline End-to-End recognition method. The real dataset consists of 20,000 images containing text from 10 languages. The challenge has 4 tasks covering various aspects of multi-lingual scene text: (a) text detection, (b) cropped word script classification, (c) joint text detection and script classification and (d) end-to-end detection and recognition. In total, the competition received 60 submissions from the research and industrial communities. This paper presents the dataset, the tasks and the findings of the presented RRC-MLT-2019 challenge.  
  Address Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ NPB2019 Serial 3341  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: