toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Anguelos Nicolaou; Andrew Bagdanov; Marcus Liwicki; Dimosthenis Karatzas edit   pdf
url  openurl
  Title (up) Sparse Radial Sampling LBP for Writer Identification Type Conference Article
  Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 716-720  
  Keywords  
  Abstract In this paper we present the use of Sparse Radial Sampling Local Binary Patterns, a variant of Local Binary Patterns (LBP) for text-as-texture classification. By adapting and extending the standard LBP operator to the particularities of text we get a generic text-as-texture classification scheme and apply it to writer identification. In experiments on CVL and ICDAR 2013 datasets, the proposed feature-set demonstrates State-Of-the-Art (SOA) performance. Among the SOA, the proposed method is the only one that is based on dense extraction of a single local feature descriptor. This makes it fast and applicable at the earliest stages in a DIA pipeline without the need for segmentation, binarization, or extraction of multiple features.  
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ NBL2015 Serial 2692  
Permanent link to this record
 

 
Author Thanh Ha Do; Salvatore Tabbone; Oriol Ramos Terrades edit   pdf
url  openurl
  Title (up) Sparse representation over learned dictionary for symbol recognition Type Journal Article
  Year 2016 Publication Signal Processing Abbreviated Journal SP  
  Volume 125 Issue Pages 36-47  
  Keywords Symbol Recognition; Sparse Representation; Learned Dictionary; Shape Context; Interest Points  
  Abstract In this paper we propose an original sparse vector model for symbol retrieval task. More speci cally, we apply the K-SVD algorithm for learning a visual dictionary based on symbol descriptors locally computed around interest points. Results on benchmark datasets show that the obtained sparse representation is competitive related to state-of-the-art methods. Moreover, our sparse representation is invariant to rotation and scale transforms and also robust to degraded images and distorted symbols. Thereby, the learned visual dictionary is able to represent instances of unseen classes of symbols.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.061; 600.077 Approved no  
  Call Number Admin @ si @ DTR2016 Serial 2946  
Permanent link to this record
 

 
Author Josep Llados; Dorothea Blostein edit  openurl
  Title (up) Special Issue on Graphics Recognition Type Journal
  Year 2007 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 9 Issue 1 Pages 1–2  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Guest Editors Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ LlB2007 Serial 781  
Permanent link to this record
 

 
Author Josep Llados; J. Lopez-Krahe; D. Archambault edit  openurl
  Title (up) Special Issue on Information Technologies for Visually Impaired People Type Journal
  Year 2007 Publication Novatica Abbreviated Journal  
  Volume 186 Issue Pages 4-7  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Guest Editors Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ LLA2007a Serial 903  
Permanent link to this record
 

 
Author Miquel Ferrer; Ernest Valveny; F. Serratosa edit  openurl
  Title (up) Spectral Median Graphs Applied to Graphical Symbol Recognition Type Book Chapter
  Year 2006 Publication 11th Iberoamerican Congress on Pattern Recognition (CIARP´06), J.P. Martinez–Trinidad et al. (Eds.), LNCS 4225: 774–783 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Cancun (Mexico)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ FVS2006b Serial 698  
Permanent link to this record
 

 
Author Christophe Rigaud; Dimosthenis Karatzas; Jean-Christophe Burie; Jean-Marc Ogier edit  openurl
  Title (up) Speech balloon contour classification in comics Type Conference Article
  Year 2013 Publication 10th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Comic books digitization combined with subsequent comic book understanding create a variety of new applications, including mobile reading and data mining. Document understanding in this domain is challenging as comics are semi-structured documents, combining semantically important graphical and textual parts. In this work we detail a novel approach for classifying speech balloon in scanned comics book pages based on their contour time series.  
  Address Bethlehem; PA; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG; 600.056 Approved no  
  Call Number Admin @ si @ RKB2013 Serial 2429  
Permanent link to this record
 

 
Author Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados edit   pdf
openurl 
  Title (up) Spotting Graphical Symbols in Camera-Acquired Documents in Real Time Type Conference Article
  Year 2013 Publication 10th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this paper we present a system devoted to spot graphical symbols in camera-acquired document images. The system is based on the extraction and further matching of ORB compact local features computed over interest key-points. Then, the FLANN indexing framework based on approximate nearest neighbor search allows to efficiently match local descriptors between the captured scene and the graphical models. Finally, the RANSAC algorithm is used in order to compute the homography between the spotted symbol and its appearance in the document image. The proposed approach is efficient and is able to work in real time.  
  Address Bethlehem; PA; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG; 600.045; 600.055; 600.061; 602.101 Approved no  
  Call Number Admin @ si @ RKL2013 Serial 2347  
Permanent link to this record
 

 
Author Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados edit  doi
isbn  openurl
  Title (up) Spotting Graphical Symbols in Camera-Acquired Documents in Real Time Type Book Chapter
  Year 2014 Publication Graphics Recognition. Current Trends and Challenges Abbreviated Journal  
  Volume 8746 Issue Pages 3-10  
  Keywords  
  Abstract In this paper we present a system devoted to spot graphical symbols in camera-acquired document images. The system is based on the extraction and further matching of ORB compact local features computed over interest key-points. Then, the FLANN indexing framework based on approximate nearest neighbor search allows to efficiently match local descriptors between the captured scene and the graphical models. Finally, the RANSAC algorithm is used in order to compute the homography between the spotted symbol and its appearance in the document image. The proposed approach is efficient and is able to work in real time.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor Bart Lamiroy; Jean-Marc Ogier  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-662-44853-3 Medium  
  Area Expedition Conference  
  Notes DAG; 600.045; 600.055; 600.061; 600.077 Approved no  
  Call Number Admin @ si @ RKL2014 Serial 2700  
Permanent link to this record
 

 
Author Thanh Ha Do; Salvatore Tabbone; Oriol Ramos Terrades edit  openurl
  Title (up) Spotting Symbol over Graphical Documents Via Sparsity in Visual Vocabulary Type Book Chapter
  Year 2016 Publication Recent Trends in Image Processing and Pattern Recognition Abbreviated Journal  
  Volume 709 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference RTIP2R  
  Notes DAG Approved no  
  Call Number Admin @ si @ HTR2016 Serial 2956  
Permanent link to this record
 

 
Author Thanh Ha Do; Salvatore Tabbone; Oriol Ramos Terrades edit  doi
isbn  openurl
  Title (up) Spotting Symbol Using Sparsity over Learned Dictionary of Local Descriptors Type Conference Article
  Year 2014 Publication 11th IAPR International Workshop on Document Analysis and Systems Abbreviated Journal  
  Volume Issue Pages 156-160  
  Keywords  
  Abstract This paper proposes a new approach to spot symbols into graphical documents using sparse representations. More specifically, a dictionary is learned from a training database of local descriptors defined over the documents. Following their sparse representations, interest points sharing similar properties are used to define interest regions. Using an original adaptation of information retrieval techniques, a vector model for interest regions and for a query symbol is built based on its sparsity in a visual vocabulary where the visual words are columns in the learned dictionary. The matching process is performed comparing the similarity between vector models. Evaluation on SESYD datasets demonstrates that our method is promising.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4799-3243-6 Medium  
  Area Expedition Conference DAS  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ DTR2014 Serial 2543  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: