toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author H. Chouaib; Oriol Ramos Terrades; Salvatore Tabbone; F. Cloppet; N. Vincent edit  doi
openurl 
  Title (up) Feature Selection Combining Genetic Algorithm and Adaboost Classifiers Type Conference Article
  Year 2008 Publication 19th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 1-4  
  Keywords  
  Abstract  
  Address Tampa, Florida  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG Approved no  
  Call Number Admin @ si @ CRT2008 Serial 1872  
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny; Horst Bunke edit   pdf
doi  openurl
  Title (up) Feature Selection on Node Statistics Based Embedding of Graphs Type Journal Article
  Year 2012 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 33 Issue 15 Pages 1980–1990  
  Keywords Structural pattern recognition; Graph embedding; Feature ranking; PCA; Graph classification  
  Abstract Representing a graph with a feature vector is a common way of making statistical machine learning algorithms applicable to the domain of graphs. Such a transition from graphs to vectors is known as graphembedding. A key issue in graphembedding is to select a proper set of features in order to make the vectorial representation of graphs as strong and discriminative as possible. In this article, we propose features that are constructed out of frequencies of node label representatives. We first build a large set of features and then select the most discriminative ones according to different ranking criteria and feature transformation algorithms. On different classification tasks, we experimentally show that only a small significant subset of these features is needed to achieve the same classification rates as competing to state-of-the-art methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ GVB2012b Serial 1993  
Permanent link to this record
 

 
Author Mohamed Ali Souibgui; Alicia Fornes; Yousri Kessentini; Beata Megyesi edit  doi
openurl 
  Title (up) Few shots are all you need: A progressive learning approach for low resource handwritten text recognition Type Journal Article
  Year 2022 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 160 Issue Pages 43-49  
  Keywords  
  Abstract Handwritten text recognition in low resource scenarios, such as manuscripts with rare alphabets, is a challenging problem. In this paper, we propose a few-shot learning-based handwriting recognition approach that significantly reduces the human annotation process, by requiring only a few images of each alphabet symbols. The method consists of detecting all the symbols of a given alphabet in a textline image and decoding the obtained similarity scores to the final sequence of transcribed symbols. Our model is first pretrained on synthetic line images generated from an alphabet, which could differ from the alphabet of the target domain. A second training step is then applied to reduce the gap between the source and the target data. Since this retraining would require annotation of thousands of handwritten symbols together with their bounding boxes, we propose to avoid such human effort through an unsupervised progressive learning approach that automatically assigns pseudo-labels to the unlabeled data. The evaluation on different datasets shows that our model can lead to competitive results with a significant reduction in human effort. The code will be publicly available in the following repository: https://github.com/dali92002/HTRbyMatching  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121; 600.162; 602.230 Approved no  
  Call Number Admin @ si @ SFK2022 Serial 3736  
Permanent link to this record
 

 
Author V. Poulain d'Andecy; Emmanuel Hartmann; Marçal Rusiñol edit   pdf
doi  openurl
  Title (up) Field Extraction by hybrid incremental and a-priori structural templates Type Conference Article
  Year 2018 Publication 13th IAPR International Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue Pages 251 - 256  
  Keywords Layout Analysis; information extraction; incremental learning  
  Abstract In this paper, we present an incremental framework for extracting information fields from administrative documents. First, we demonstrate some limits of the existing state-of-the-art methods such as the delay of the system efficiency. This is a concern in industrial context when we have only few samples of each document class. Based on this analysis, we propose a hybrid system combining incremental learning by means of itf-df statistics and a-priori generic
models. We report in the experimental section our results obtained with a dataset of real invoices.
 
  Address Viena; Austria; April 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 600.084; 600.129; 600.121 Approved no  
  Call Number Admin @ si @ PHR2018 Serial 3106  
Permanent link to this record
 

 
Author Marçal Rusiñol; T.Benkhelfallah; V. Poulain d'Andecy edit   pdf
doi  openurl
  Title (up) Field Extraction from Administrative Documents by Incremental Structural Templates Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1100 - 1104  
  Keywords  
  Abstract In this paper we present an incremental framework aimed at extracting field information from administrative document images in the context of a Digital Mail-room scenario. Given a single training sample in which the user has marked which fields have to be extracted from a particular document class, a document model representing structural relationships among words is built. This model is incrementally refined as the system processes more and more documents from the same class. A reformulation of the tf-idf statistic scheme allows to adjust the importance weights of the structural relationships among words. We report in the experimental section our results obtained with a large dataset of real invoices.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.56; 600.045; 605.203; 602.101 Approved no  
  Call Number Admin @ si @ RBP2013 Serial 2346  
Permanent link to this record
 

 
Author Marçal Rusiñol; J. Chazalon; Jean-Marc Ogier edit   pdf
openurl 
  Title (up) Filtrage de descripteurs locaux pour l'amélioration de la détection de documents Type Conference Article
  Year 2016 Publication Colloque International Francophone sur l'Écrit et le Document Abbreviated Journal  
  Volume Issue Pages  
  Keywords Local descriptors; mobile capture; document matching; keypoint selection  
  Abstract In this paper we propose an effective method aimed at reducing the amount of local descriptors to be indexed in a document matching framework.In an off-line training stage, the matching between the model document and incoming images is computed retaining the local descriptors from the model that steadily produce good matches. We have evaluated this approach by using the ICDAR2015 SmartDOC dataset containing near 25000 images from documents to be captured by a mobile device. We have tested the performance of this filtering step by using ORB and SIFT local detectors and descriptors. The results show an important gain both in quality of the final matching as well as in time and space requirements.  
  Address Toulouse; France; March 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CIFED  
  Notes DAG; 600.084; 600.077 Approved no  
  Call Number Admin @ si @ RCO2016 Serial 2755  
Permanent link to this record
 

 
Author Josep Llados; Horst Bunke; Enric Marti edit   pdf
url  doi
openurl 
  Title (up) Finding rotational symmetries by cyclic string matching Type Journal Article
  Year 1997 Publication Pattern recognition letters Abbreviated Journal PRL  
  Volume 18 Issue 14 Pages 1435-1442  
  Keywords Rotational symmetry; Reflectional symmetry; String matching  
  Abstract Symmetry is an important shape feature. In this paper, a simple and fast method to detect perfect and distorted rotational symmetries of 2D objects is described. The boundary of a shape is polygonally approximated and represented as a string. Rotational symmetries are found by cyclic string matching between two identical copies of the shape string. The set of minimum cost edit sequences that transform the shape string to a cyclically shifted version of itself define the rotational symmetry and its order. Finally, a modification of the algorithm is proposed to detect reflectional symmetries. Some experimental results are presented to show the reliability of the proposed algorithm  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG;IAM; Approved no  
  Call Number IAM @ iam @ LBM1997a Serial 1562  
Permanent link to this record
 

 
Author Andres Mafla; Sounak Dey; Ali Furkan Biten; Lluis Gomez; Dimosthenis Karatzas edit   pdf
url  doi
openurl 
  Title (up) Fine-grained Image Classification and Retrieval by Combining Visual and Locally Pooled Textual Features Type Conference Article
  Year 2020 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Text contained in an image carries high-level semantics that can be exploited to achieve richer image understanding. In particular, the mere presence of text provides strong guiding content that should be employed to tackle a diversity of computer vision tasks such as image retrieval, fine-grained classification, and visual question answering. In this paper, we address the problem of fine-grained classification and image retrieval by leveraging textual information along with visual cues to comprehend the existing intrinsic relation between the two modalities. The novelty of the proposed model consists of the usage of a PHOC descriptor to construct a bag of textual words along with a Fisher Vector Encoding that captures the morphology of text. This approach provides a stronger multimodal representation for this task and as our experiments demonstrate, it achieves state-of-the-art results on two different tasks, fine-grained classification and image retrieval.  
  Address Aspen; Colorado; USA; March 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ MDB2020 Serial 3334  
Permanent link to this record
 

 
Author Marçal Rusiñol; Lluis Pere de las Heras; Oriol Ramos Terrades edit   pdf
doi  openurl
  Title (up) Flowchart Recognition for Non-Textual Information Retrieval in Patent Search Type Journal Article
  Year 2014 Publication Information Retrieval Abbreviated Journal IR  
  Volume 17 Issue 5-6 Pages 545-562  
  Keywords Flowchart recognition; Patent documents; Text/graphics separation; Raster-to-vector conversion; Symbol recognition  
  Abstract Relatively little research has been done on the topic of patent image retrieval and in general in most of the approaches the retrieval is performed in terms of a similarity measure between the query image and the images in the corpus. However, systems aimed at overcoming the semantic gap between the visual description of patent images and their conveyed concepts would be very helpful for patent professionals. In this paper we present a flowchart recognition method aimed at achieving a structured representation of flowchart images that can be further queried semantically. The proposed method was submitted to the CLEF-IP 2012 flowchart recognition task. We report the obtained results on this dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-4564 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ RHR2013 Serial 2342  
Permanent link to this record
 

 
Author Marçal Rusiñol; Josep Llados edit  doi
openurl 
  Title (up) Flowchart Recognition in Patent Information Retrieval Type Book Chapter
  Year 2017 Publication Current Challenges in Patent Information Retrieval Abbreviated Journal  
  Volume 37 Issue Pages 351-368  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor M. Lupu; K. Mayer; N. Kando; A.J. Trippe  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ RuL2017 Serial 2896  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: