toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Muhammad Muzzamil Luqman; Jean-Yves Ramel; Josep Llados; Thierry Brouard edit  doi
isbn  openurl
  Title (down) Subgraph Spotting Through Explicit Graph Embedding: An Application to Content Spotting in Graphic Document Images Type Conference Article
  Year 2011 Publication 11th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 870-874  
  Keywords  
  Abstract We present a method for spotting a subgraph in a graph repository. Subgraph spotting is a very interesting research problem for various application domains where the use of a relational data structure is mandatory. Our proposed method accomplishes subgraph spotting through graph embedding. We achieve automatic indexation of a graph repository during off-line learning phase, where we (i) break the graphs into 2-node sub graphs (a.k.a. cliques of order 2), which are primitive building-blocks of a graph, (ii) embed the 2-node sub graphs into feature vectors by employing our recently proposed explicit graph embedding technique, (iii) cluster the feature vectors in classes by employing a classic agglomerative clustering technique, (iv) build an index for the graph repository and (v) learn a Bayesian network classifier. The subgraph spotting is achieved during the on-line querying phase, where we (i) break the query graph into 2-node sub graphs, (ii) embed them into feature vectors, (iii) employ the Bayesian network classifier for classifying the query 2-node sub graphs and (iv) retrieve the respective graphs by looking-up in the index of the graph repository. The graphs containing all query 2-node sub graphs form the set of result graphs for the query. Finally, we employ the adjacency matrix of each result graph along with a score function, for spotting the query graph in it. The proposed subgraph spotting method is equally applicable to a wide range of domains, offering ease of query by example (QBE) and granularity of focused retrieval. Experimental results are presented for graphs generated from two repositories of electronic and architectural document images.  
  Address Beijing, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN 978-1-4577-1350-7 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ LRL2011 Serial 1790  
Permanent link to this record
 

 
Author Thanh Nam Le; Muhammad Muzzamil Luqman; Anjan Dutta; Pierre Heroux; Christophe Rigaud; Clement Guerin; Pasquale Foggia; Jean Christophe Burie; Jean Marc Ogier; Josep Llados; Sebastien Adam edit  url
openurl 
  Title (down) Subgraph spotting in graph representations of comic book images Type Journal Article
  Year 2018 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 112 Issue Pages 118-124  
  Keywords Attributed graph; Region adjacency graph; Graph matching; Graph isomorphism; Subgraph isomorphism; Subgraph spotting; Graph indexing; Graph retrieval; Query by example; Dataset and comic book images  
  Abstract Graph-based representations are the most powerful data structures for extracting, representing and preserving the structural information of underlying data. Subgraph spotting is an interesting research problem, especially for studying and investigating the structural information based content-based image retrieval (CBIR) and query by example (QBE) in image databases. In this paper we address the problem of lack of freely available ground-truthed datasets for subgraph spotting and present a new dataset for subgraph spotting in graph representations of comic book images (SSGCI) with its ground-truth and evaluation protocol. Experimental results of two state-of-the-art methods of subgraph spotting are presented on the new SSGCI dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ LLD2018 Serial 3150  
Permanent link to this record
 

 
Author Francisco Alvaro; Francisco Cruz; Joan Andreu Sanchez; Oriol Ramos Terrades; Jose Miguel Benedi edit   pdf
openurl 
  Title (down) Structure Detection and Segmentation of Documents Using 2D Stochastic Context-Free Grammars Type Journal Article
  Year 2015 Publication Neurocomputing Abbreviated Journal NEUCOM  
  Volume 150 Issue A Pages 147-154  
  Keywords document image analysis; stochastic context-free grammars; text classi cation features  
  Abstract In this paper we de ne a bidimensional extension of Stochastic Context-Free Grammars for structure detection and segmentation of images of documents.
Two sets of text classi cation features are used to perform an initial classi cation of each zone of the page. Then, the document segmentation is obtained as the most likely hypothesis according to a stochastic grammar. We used a dataset of historical marriage license books to validate this approach. We also tested several inference algorithms for Probabilistic Graphical Models
and the results showed that the proposed grammatical model outperformed
the other methods. Furthermore, grammars also provide the document structure
along with its segmentation.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 601.158; 600.077; 600.061 Approved no  
  Call Number Admin @ si @ ACS2015 Serial 2531  
Permanent link to this record
 

 
Author Josep Llados; Horst Bunke; Enric Marti edit   pdf
openurl 
  Title (down) Structural Recognition of hand drawn floor plans Type Conference Article
  Year 1996 Publication VI National Symposium on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume Issue Pages  
  Keywords Rotational Symmetry; Reflectional Symmetry; String Matching.  
  Abstract A system to recognize hand drawn architectural drawings in a CAD environment has been deve- loped. In this paper we focus on its high level interpretation module. To interpret a floor plan, the system must identify several building elements, whose description is stored in a library of pat- terns, as well as their spatial relationships. We propose a structural approach based on subgraph isomorphism techniques to obtain a high-level interpretation of the document. The vectorized input document and the patterns to be recognized are represented by attributed graphs. Discrete relaxation techniques (AC4 algorithm) have been applied to develop the matching algorithm. The process has been divided in three steps: node labeling, local consistency and global consistency verification. The hand drawn creation causes disturbed line drawings with several accuracy errors, which must be taken into account. Here we have identified them and the AC4 algorithm has been adapted to manage them.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cordoba Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG;IAM; Approved no  
  Call Number IAM @ iam @ LIM1995 Serial 1565  
Permanent link to this record
 

 
Author Anjan Dutta; Hichem Sahbi edit   pdf
doi  openurl
  Title (down) Stochastic Graphlet Embedding Type Journal Article
  Year 2018 Publication IEEE Transactions on Neural Networks and Learning Systems Abbreviated Journal TNNLS  
  Volume Issue Pages 1-14  
  Keywords Stochastic graphlets; Graph embedding; Graph classification; Graph hashing; Betweenness centrality  
  Abstract Graph-based methods are known to be successful in many machine learning and pattern classification tasks. These methods consider semi-structured data as graphs where nodes correspond to primitives (parts, interest points, segments,
etc.) and edges characterize the relationships between these primitives. However, these non-vectorial graph data cannot be straightforwardly plugged into off-the-shelf machine learning algorithms without a preliminary step of – explicit/implicit –graph vectorization and embedding. This embedding process
should be resilient to intra-class graph variations while being highly discriminant. In this paper, we propose a novel high-order stochastic graphlet embedding (SGE) that maps graphs into vector spaces. Our main contribution includes a new stochastic search procedure that efficiently parses a given graph and extracts/samples unlimitedly high-order graphlets. We consider
these graphlets, with increasing orders, to model local primitives as well as their increasingly complex interactions. In order to build our graph representation, we measure the distribution of these graphlets into a given graph, using particular hash functions that efficiently assign sampled graphlets into isomorphic sets with a very low probability of collision. When
combined with maximum margin classifiers, these graphlet-based representations have positive impact on the performance of pattern comparison and recognition as corroborated through extensive experiments using standard benchmark databases.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 602.167; 602.168; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ DuS2018 Serial 3225  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Ahmed Sheraz; Marcus Liwicki; Ernest Valveny; Gemma Sanchez edit   pdf
doi  openurl
  Title (down) Statistical Segmentation and Structural Recognition for Floor Plan Interpretation Type Journal Article
  Year 2014 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 17 Issue 3 Pages 221-237  
  Keywords  
  Abstract A generic method for floor plan analysis and interpretation is presented in this article. The method, which is mainly inspired by the way engineers draw and interpret floor plans, applies two recognition steps in a bottom-up manner. First, basic building blocks, i.e., walls, doors, and windows are detected using a statistical patch-based segmentation approach. Second, a graph is generated, and structural pattern recognition techniques are applied to further locate the main entities, i.e., rooms of the building. The proposed approach is able to analyze any type of floor plan regardless of the notation used. We have evaluated our method on different publicly available datasets of real architectural floor plans with different notations. The overall detection and recognition accuracy is about 95 %, which is significantly better than any other state-of-the-art method. Our approach is generic enough such that it could be easily adopted to the recognition and interpretation of any other printed machine-generated structured documents.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.076; 600.077 Approved no  
  Call Number HSL2014 Serial 2370  
Permanent link to this record
 

 
Author Alicia Fornes; Josep Llados; Gemma Sanchez edit  openurl
  Title (down) Staff and graphical primitive segmentation in old handwritten music scores Type Miscellaneous
  Year 2005 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ FLS2005b Serial 585  
Permanent link to this record
 

 
Author Andres Mafla; Rafael S. Rezende; Lluis Gomez; Diana Larlus; Dimosthenis Karatzas edit   pdf
doi  openurl
  Title (down) StacMR: Scene-Text Aware Cross-Modal Retrieval Type Conference Article
  Year 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 2219-2229  
  Keywords  
  Abstract  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ MRG2021a Serial 3492  
Permanent link to this record
 

 
Author Joan Mas; Gemma Sanchez; Josep Llados edit  openurl
  Title (down) SSP: Sketching slide Presentations, a Syntactic Approach Type Conference Article
  Year 2009 Publication 8th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The design of a slide presentation is a creative process. In this process first, humans visualize in their minds what they want to explain. Then, they have to be able to represent this knowledge in an understandable way. There exists a lot of commercial software that allows to create our own slide presentations but the creativity of the user is rather limited. In this article we present an application that allows the user to create and visualize a slide presentation from a sketch. A slide may be seen as a graphical document or a diagram where its elements are placed in a particular spatial arrangement. To describe and recognize slides a syntactic approach is proposed. This approach is based on an Adjacency Grammar and a parsing methodology to cope with this kind of grammars. The experimental evaluation shows the performance of our methodology from a qualitative and a quantitative point of view. Six different slides containing different number of symbols, from 4 to 7, have been given to the users and they have drawn them without restrictions in the order of the elements. The quantitative results give an idea on how suitable is our methodology to describe and recognize the different elements in a slide.  
  Address La Rochelle; France; July 2009  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG Approved no  
  Call Number DAG @ dag @ MSL2009a Serial 1441  
Permanent link to this record
 

 
Author Joan Mas; Gemma Sanchez; Josep Llados edit  doi
isbn  openurl
  Title (down) SSP: Sketching slide Presentations, a Syntactic Approach Type Book Chapter
  Year 2010 Publication Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers Abbreviated Journal  
  Volume 6020 Issue Pages 118-129  
  Keywords  
  Abstract The design of a slide presentation is a creative process. In this process first, humans visualize in their minds what they want to explain. Then, they have to be able to represent this knowledge in an understandable way. There exists a lot of commercial software that allows to create our own slide presentations but the creativity of the user is rather limited. In this article we present an application that allows the user to create and visualize a slide presentation from a sketch. A slide may be seen as a graphical document or a diagram where its elements are placed in a particular spatial arrangement. To describe and recognize slides a syntactic approach is proposed. This approach is based on an Adjacency Grammar and a parsing methodology to cope with this kind of grammars. The experimental evaluation shows the performance of our methodology from a qualitative and a quantitative point of view. Six different slides containing different number of symbols, from 4 to 7, have been given to the users and they have drawn them without restrictions in the order of the elements. The quantitative results give an idea on how suitable is our methodology to describe and recognize the different elements in a slide.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-13727-3 Medium  
  Area Expedition Conference GREC  
  Notes DAG Approved no  
  Call Number MSL2010 Serial 2405  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: