|
Records |
Links |
|
Author |
Arnau Baro; Pau Riba; Jorge Calvo-Zaragoza; Alicia Fornes |
|
|
Title |
From Optical Music Recognition to Handwritten Music Recognition: a Baseline |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
123 |
Issue |
|
Pages |
1-8 |
|
|
Keywords |
|
|
|
Abstract |
Optical Music Recognition (OMR) is the branch of document image analysis that aims to convert images of musical scores into a computer-readable format. Despite decades of research, the recognition of handwritten music scores, concretely the Western notation, is still an open problem, and the few existing works only focus on a specific stage of OMR. In this work, we propose a full Handwritten Music Recognition (HMR) system based on Convolutional Recurrent Neural Networks, data augmentation and transfer learning, that can serve as a baseline for the research community. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.097; 601.302; 601.330; 600.140; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BRC2019 |
Serial |
3275 |
|
Permanent link to this record |
|
|
|
|
Author |
Arnau Baro; Jialuo Chen; Alicia Fornes; Beata Megyesi |
|
|
Title |
Towards a generic unsupervised method for transcription of encoded manuscripts |
Type |
Conference Article |
|
Year |
2019 |
Publication |
3rd International Conference on Digital Access to Textual Cultural Heritage |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
73-78 |
|
|
Keywords |
A. Baró, J. Chen, A. Fornés, B. Megyesi. |
|
|
Abstract |
Historical ciphers, a special type of manuscripts, contain encrypted information, important for the interpretation of our history. The first step towards decipherment is to transcribe the images, either manually or by automatic image processing techniques. Despite the improvements in handwritten text recognition (HTR) thanks to deep learning methodologies, the need of labelled data to train is an important limitation. Given that ciphers often use symbol sets across various alphabets and unique symbols without any transcription scheme available, these supervised HTR techniques are not suitable to transcribe ciphers. In this paper we propose an un-supervised method for transcribing encrypted manuscripts based on clustering and label propagation, which has been successfully applied to community detection in networks. We analyze the performance on ciphers with various symbol sets, and discuss the advantages and drawbacks compared to supervised HTR methods. |
|
|
Address |
Brussels; May 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DATeCH |
|
|
Notes |
DAG; 600.097; 600.140; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BCF2019 |
Serial |
3276 |
|
Permanent link to this record |
|
|
|
|
Author |
Lei Kang; Marçal Rusiñol; Alicia Fornes; Pau Riba; Mauricio Villegas |
|
|
Title |
Unsupervised Adaptation for Synthetic-to-Real Handwritten Word Recognition |
Type |
Conference Article |
|
Year |
2020 |
Publication |
IEEE Winter Conference on Applications of Computer Vision |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Handwritten Text Recognition (HTR) is still a challenging problem because it must deal with two important difficulties: the variability among writing styles, and the scarcity of labelled data. To alleviate such problems, synthetic data generation and data augmentation are typically used to train HTR systems. However, training with such data produces encouraging but still inaccurate transcriptions in real words. In this paper, we propose an unsupervised writer adaptation approach that is able to automatically adjust a generic handwritten word recognizer, fully trained with synthetic fonts, towards a new incoming writer. We have experimentally validated our proposal using five different datasets, covering several challenges (i) the document source: modern and historic samples, which may involve paper degradation problems; (ii) different handwriting styles: single and multiple writer collections; and (iii) language, which involves different character combinations. Across these challenging collections, we show that our system is able to maintain its performance, thus, it provides a practical and generic approach to deal with new document collections without requiring any expensive and tedious manual annotation step. |
|
|
Address |
Aspen; Colorado; USA; March 2020 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
WACV |
|
|
Notes |
DAG; 600.129; 600.140; 601.302; 601.312; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ KRF2020 |
Serial |
3446 |
|
Permanent link to this record |
|
|
|
|
Author |
Raul Gomez; Jaume Gibert; Lluis Gomez; Dimosthenis Karatzas |
|
|
Title |
Exploring Hate Speech Detection in Multimodal Publications |
Type |
Conference Article |
|
Year |
2020 |
Publication |
IEEE Winter Conference on Applications of Computer Vision |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
In this work we target the problem of hate speech detection in multimodal publications formed by a text and an image. We gather and annotate a large scale dataset from Twitter, MMHS150K, and propose different models that jointly analyze textual and visual information for hate speech detection, comparing them with unimodal detection. We provide quantitative and qualitative results and analyze the challenges of the proposed task. We find that, even though images are useful for the hate speech detection task, current multimodal models cannot outperform models analyzing only text. We discuss why and open the field and the dataset for further research. |
|
|
Address |
Aspen; March 2020 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
WACV |
|
|
Notes |
DAG; 600.121; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GGG2020a |
Serial |
3280 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol |
|
|
Title |
Classificació semàntica i visual de documents digitals |
Type |
Journal |
|
Year |
2019 |
Publication |
Revista de biblioteconomia i documentacio |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
75-86 |
|
|
Keywords |
|
|
|
Abstract |
Se analizan los sistemas de procesamiento automático que trabajan sobre documentos digitalizados con el objetivo de describir los contenidos. De esta forma contribuyen a facilitar el acceso, permitir la indización automática y hacer accesibles los documentos a los motores de búsqueda. El objetivo de estas tecnologías es poder entrenar modelos computacionales que sean capaces de clasificar, agrupar o realizar búsquedas sobre documentos digitales. Así, se describen las tareas de clasificación, agrupamiento y búsqueda. Cuando utilizamos tecnologías de inteligencia artificial en los sistemas de
clasificación esperamos que la herramienta nos devuelva etiquetas semánticas; en sistemas de agrupamiento que nos devuelva documentos agrupados en clusters significativos; y en sistemas de búsqueda esperamos que dada una consulta, nos devuelva una lista ordenada de documentos en función de la relevancia. A continuación se da una visión de conjunto de los métodos que nos permiten describir los documentos digitales, tanto de manera visual (cuál es su apariencia), como a partir de sus contenidos semánticos (de qué hablan). En cuanto a la descripción visual de documentos se aborda el estado de la cuestión de las representaciones numéricas de documentos digitalizados
tanto por métodos clásicos como por métodos basados en el aprendizaje profundo (deep learning). Respecto de la descripción semántica de los contenidos se analizan técnicas como el reconocimiento óptico de caracteres (OCR); el cálculo de estadísticas básicas sobre la aparición de las diferentes palabras en un texto (bag-of-words model); y los métodos basados en aprendizaje profundo como el método word2vec, basado en una red neuronal que, dadas unas cuantas palabras de un texto, debe predecir cuál será la
siguiente palabra. Desde el campo de las ingenierías se están transfiriendo conocimientos que se han integrado en productos o servicios en los ámbitos de la archivística, la biblioteconomía, la documentación y las plataformas de gran consumo, sin embargo los algoritmos deben ser lo suficientemente eficientes no sólo para el reconocimiento y transcripción literal sino también para la capacidad de interpretación de los contenidos. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.084; 600.135; 600.121; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ Rus2019 |
Serial |
3282 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; Lluis Gomez; A. Landman; M. Silva Constenla; Dimosthenis Karatzas |
|
|
Title |
Automatic Structured Text Reading for License Plates and Utility Meters |
Type |
Conference Article |
|
Year |
2019 |
Publication |
BMVC Workshop on Visual Artificial Intelligence and Entrepreneurship |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Reading text in images has attracted interest from computer vision researchers for
many years. Our technology focuses on the extraction of structured text – such as serial
numbers, machine readings, product codes, etc. – so that it is able to center its attention just on the relevant textual elements. It is conceived to work in an end-to-end fashion, bypassing any explicit text segmentation stage. In this paper we present two different industrial use cases where we have applied our automatic structured text reading technology. In the first one, we demonstrate an outstanding performance when reading license plates compared to the current state of the art. In the second one, we present results on our solution for reading utility meters. The technology is commercialized by a recently created spin-off company, and both solutions are at different stages of integration with final clients. |
|
|
Address |
Cardiff; UK; September 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
BMVC-VAIE19 |
|
|
Notes |
DAG; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RGL2019 |
Serial |
3283 |
|
Permanent link to this record |
|
|
|
|
Author |
Ali Furkan Biten; Ruben Tito; Andres Mafla; Lluis Gomez; Marçal Rusiñol; M. Mathew; C.V. Jawahar; Ernest Valveny; Dimosthenis Karatzas |
|
|
Title |
ICDAR 2019 Competition on Scene Text Visual Question Answering |
Type |
Conference Article |
|
Year |
2019 |
Publication |
3rd Workshop on Closing the Loop Between Vision and Language, in conjunction with ICCV2019 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This paper presents final results of ICDAR 2019 Scene Text Visual Question Answering competition (ST-VQA). ST-VQA introduces an important aspect that is not addressed
by any Visual Question Answering system up to date, namely the incorporation of scene text to answer questions asked about an image. The competition introduces a new dataset comprising 23, 038 images annotated with 31, 791 question / answer pairs where the answer is always grounded on text instances present in the image. The images are taken from 7 different public computer vision datasets, covering a wide range of scenarios.
The competition was structured in three tasks of increasing difficulty, that require reading the text in a scene and understanding it in the context of the scene, to correctly answer a given question. A novel evaluation metric is presented, which elegantly assesses both key capabilities expected from an optimal model: text recognition and image understanding. A detailed analysis of results from different participants is showcased, which provides insight into the current capabilities of VQA systems that can read. We firmly believe the dataset proposed in this challenge will be an important milestone to consider towards a path of more robust and general models that
can exploit scene text to achieve holistic image understanding. |
|
|
Address |
Sydney; Australia; September 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CLVL |
|
|
Notes |
DAG; 600.129; 601.338; 600.135; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BTM2019a |
Serial |
3284 |
|
Permanent link to this record |
|
|
|
|
Author |
Ali Furkan Biten; Ruben Tito; Andres Mafla; Lluis Gomez; Marçal Rusiñol; C.V. Jawahar; Ernest Valveny; Dimosthenis Karatzas |
|
|
Title |
Scene Text Visual Question Answering |
Type |
Conference Article |
|
Year |
2019 |
Publication |
18th IEEE International Conference on Computer Vision |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
4291-4301 |
|
|
Keywords |
|
|
|
Abstract |
Current visual question answering datasets do not consider the rich semantic information conveyed by text within an image. In this work, we present a new dataset, ST-VQA, that aims to highlight the importance of exploiting highlevel semantic information present in images as textual cues in the Visual Question Answering process. We use this dataset to define a series of tasks of increasing difficulty for which reading the scene text in the context provided by the visual information is necessary to reason and generate an appropriate answer. We propose a new evaluation metric for these tasks to account both for reasoning errors as well as shortcomings of the text recognition module. In addition we put forward a series of baseline methods, which provide further insight to the newly released dataset, and set the scene for further research. |
|
|
Address |
Seul; Corea; October 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICCV |
|
|
Notes |
DAG; 600.129; 600.135; 601.338; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BTM2019b |
Serial |
3285 |
|
Permanent link to this record |
|
|
|
|
Author |
Ali Furkan Biten; Ruben Tito; Andres Mafla; Lluis Gomez; Marçal Rusiñol; M. Mathew; C.V. Jawahar; Ernest Valveny; Dimosthenis Karatzas |
|
|
Title |
ICDAR 2019 Competition on Scene Text Visual Question Answering |
Type |
Conference Article |
|
Year |
2019 |
Publication |
15th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1563-1570 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents final results of ICDAR 2019 Scene Text Visual Question Answering competition (ST-VQA). ST-VQA introduces an important aspect that is not addressed by any Visual Question Answering system up to date, namely the incorporation of scene text to answer questions asked about an image. The competition introduces a new dataset comprising 23,038 images annotated with 31,791 question / answer pairs where the answer is always grounded on text instances present in the image. The images are taken from 7 different public computer vision datasets, covering a wide range of scenarios. The competition was structured in three tasks of increasing difficulty, that require reading the text in a scene and understanding it in the context of the scene, to correctly answer a given question. A novel evaluation metric is presented, which elegantly assesses both key capabilities expected from an optimal model: text recognition and image understanding. A detailed analysis of results from different participants is showcased, which provides insight into the current capabilities of VQA systems that can read. We firmly believe the dataset proposed in this challenge will be an important milestone to consider towards a path of more robust and general models that can exploit scene text to achieve holistic image understanding. |
|
|
Address |
Sydney; Australia; September 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.129; 601.338; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BTM2019c |
Serial |
3286 |
|
Permanent link to this record |
|
|
|
|
Author |
Y. Patel; Lluis Gomez; Marçal Rusiñol; Dimosthenis Karatzas; C.V. Jawahar |
|
|
Title |
Self-Supervised Visual Representations for Cross-Modal Retrieval |
Type |
Conference Article |
|
Year |
2019 |
Publication |
ACM International Conference on Multimedia Retrieval |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
182–186 |
|
|
Keywords |
|
|
|
Abstract |
Cross-modal retrieval methods have been significantly improved in last years with the use of deep neural networks and large-scale annotated datasets such as ImageNet and Places. However, collecting and annotating such datasets requires a tremendous amount of human effort and, besides, their annotations are limited to discrete sets of popular visual classes that may not be representative of the richer semantics found on large-scale cross-modal retrieval datasets. In this paper, we present a self-supervised cross-modal retrieval framework that leverages as training data the correlations between images and text on the entire set of Wikipedia articles. Our method consists in training a CNN to predict: (1) the semantic context of the article in which an image is more probable to appear as an illustration, and (2) the semantic context of its caption. Our experiments demonstrate that the proposed method is not only capable of learning discriminative visual representations for solving vision tasks like classification, but that the learned representations are better for cross-modal retrieval when compared to supervised pre-training of the network on the ImageNet dataset. |
|
|
Address |
Otawa; Canada; june 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICMR |
|
|
Notes |
DAG; 600.121; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ PGR2019 |
Serial |
3288 |
|
Permanent link to this record |