toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Lluis Gomez; Dimosthenis Karatzas edit   pdf
url  doi
openurl 
  Title Object Proposals for Text Extraction in the Wild Type Conference Article
  Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 206 - 210  
  Keywords  
  Abstract Object Proposals is a recent computer vision technique receiving increasing interest from the research community. Its main objective is to generate a relatively small set of bounding box proposals that are most likely to contain objects of interest. The use of Object Proposals techniques in the scene text understanding field is innovative. Motivated by the success of powerful while expensive techniques to recognize words in a holistic way, Object Proposals techniques emerge as an alternative to the traditional text detectors. In this paper we study to what extent the existing generic Object Proposals methods may be useful for scene text understanding. Also, we propose a new Object Proposals algorithm that is specifically designed for text and compare it with other generic methods in the state of the art. Experiments show that our proposal is superior in its ability of producing good quality word proposals in an efficient way. The source code of our method is made publicly available  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.077; 600.084; 601.197 Approved no  
  Call Number Admin @ si @ GoK2015 Serial 2691  
Permanent link to this record
 

 
Author Anguelos Nicolaou; Andrew Bagdanov; Marcus Liwicki; Dimosthenis Karatzas edit   pdf
url  openurl
  Title Sparse Radial Sampling LBP for Writer Identification Type Conference Article
  Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 716-720  
  Keywords  
  Abstract In this paper we present the use of Sparse Radial Sampling Local Binary Patterns, a variant of Local Binary Patterns (LBP) for text-as-texture classification. By adapting and extending the standard LBP operator to the particularities of text we get a generic text-as-texture classification scheme and apply it to writer identification. In experiments on CVL and ICDAR 2013 datasets, the proposed feature-set demonstrates State-Of-the-Art (SOA) performance. Among the SOA, the proposed method is the only one that is based on dense extraction of a single local feature descriptor. This makes it fast and applicable at the earliest stages in a DIA pipeline without the need for segmentation, binarization, or extraction of multiple features.  
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ NBL2015 Serial 2692  
Permanent link to this record
 

 
Author Suman Ghosh; Lluis Gomez; Dimosthenis Karatzas; Ernest Valveny edit   pdf
doi  openurl
  Title Efficient indexing for Query By String text retrieval Type Conference Article
  Year 2015 Publication 6th IAPR International Workshop on Camera Based Document Analysis and Recognition CBDAR2015 Abbreviated Journal  
  Volume Issue Pages 1236 - 1240  
  Keywords  
  Abstract This paper deals with Query By String word spotting in scene images. A hierarchical text segmentation algorithm based on text specific selective search is used to find text regions. These regions are indexed per character n-grams present in the text region. An attribute representation based on Pyramidal Histogram of Characters (PHOC) is used to compare text regions with the query text. For generation of the index a similar attribute space based Pyramidal Histogram of character n-grams is used. These attribute models are learned using linear SVMs over the Fisher Vector [1] representation of the images along with the PHOC labels of the corresponding strings.  
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CBDAR  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ GGK2015 Serial 2693  
Permanent link to this record
 

 
Author J.Kuhn; A.Nussbaumer; J.Pirker; Dimosthenis Karatzas; A. Pagani; O.Conlan; M.Memmel; C.M.Steiner; C.Gutl; D.Albert; Andreas Dengel edit  url
doi  openurl
  Title Advancing Physics Learning Through Traversing a Multi-Modal Experimentation Space Type Conference Article
  Year 2015 Publication Workshop Proceedings on the 11th International Conference on Intelligent Environments Abbreviated Journal  
  Volume 19 Issue Pages 373-380  
  Keywords  
  Abstract Translating conceptual knowledge into real world experiences presents a significant educational challenge. This position paper presents an approach that supports learners in moving seamlessly between conceptual learning and their application in the real world by bringing physical and virtual experiments into everyday settings. Learners are empowered in conducting these situated experiments in a variety of physical settings by leveraging state of the art mobile, augmented reality, and virtual reality technology. A blend of mobile-based multi-sensory physical experiments, augmented reality and enabling virtual environments can allow learners to bridge their conceptual learning with tangible experiences in a completely novel manner. This approach focuses on the learner by applying self-regulated personalised learning techniques, underpinned by innovative pedagogical approaches and adaptation techniques, to ensure that the needs and preferences of each learner are catered for individually.  
  Address Praga; Chzech Republic; July 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IE  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ KNP2015 Serial 2694  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Ernest Valveny; Gemma Sanchez edit  openurl
  Title Unsupervised and Notation-Independent Wall Segmentation in Floor Plans Using a Combination of Statistical and Structural Strategies Type Conference Article
  Year 2013 Publication 10th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Bethlehem; PA; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG Approved no  
  Call Number Admin @ si @ HVS2013b Serial 2696  
Permanent link to this record
 

 
Author Klaus Broelemann; Anjan Dutta; Xiaoyi Jiang; Josep Llados edit   pdf
doi  isbn
openurl 
  Title Hierarchical Plausibility-Graphs for Symbol Spotting in Graphical Documents Type Book Chapter
  Year 2014 Publication Graphics Recognition. Current Trends and Challenges Abbreviated Journal  
  Volume 8746 Issue Pages 25-37  
  Keywords  
  Abstract Graph representation of graphical documents often suffers from noise such as spurious nodes and edges, and their discontinuity. In general these errors occur during the low-level image processing viz. binarization, skeletonization, vectorization etc. Hierarchical graph representation is a nice and efficient way to solve this kind of problem by hierarchically merging node-node and node-edge depending on the distance. But the creation of hierarchical graph representing the graphical information often uses hard thresholds on the distance to create the hierarchical nodes (next state) of the lower nodes (or states) of a graph. As a result, the representation often loses useful information. This paper introduces plausibilities to the nodes of hierarchical graph as a function of distance and proposes a modified algorithm for matching subgraphs of the hierarchical graphs. The plausibility-annotated nodes help to improve the performance of the matching algorithm on two hierarchical structures. To show the potential of this approach, we conduct an experiment with the SESYD dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor Bart Lamiroy; Jean-Marc Ogier  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-662-44853-3 Medium  
  Area Expedition Conference  
  Notes DAG; 600.045; 600.056; 600.061; 600.077 Approved no  
  Call Number Admin @ si @ BDJ2014 Serial 2699  
Permanent link to this record
 

 
Author Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados edit  doi
isbn  openurl
  Title Spotting Graphical Symbols in Camera-Acquired Documents in Real Time Type Book Chapter
  Year 2014 Publication Graphics Recognition. Current Trends and Challenges Abbreviated Journal  
  Volume 8746 Issue Pages 3-10  
  Keywords  
  Abstract In this paper we present a system devoted to spot graphical symbols in camera-acquired document images. The system is based on the extraction and further matching of ORB compact local features computed over interest key-points. Then, the FLANN indexing framework based on approximate nearest neighbor search allows to efficiently match local descriptors between the captured scene and the graphical models. Finally, the RANSAC algorithm is used in order to compute the homography between the spotted symbol and its appearance in the document image. The proposed approach is efficient and is able to work in real time.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor Bart Lamiroy; Jean-Marc Ogier  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-662-44853-3 Medium  
  Area Expedition Conference  
  Notes DAG; 600.045; 600.055; 600.061; 600.077 Approved no  
  Call Number Admin @ si @ RKL2014 Serial 2700  
Permanent link to this record
 

 
Author Marçal Rusiñol; V. Poulain d'Andecy; Dimosthenis Karatzas; Josep Llados edit   pdf
doi  isbn
openurl 
  Title Classification of Administrative Document Images by Logo Identification Type Book Chapter
  Year 2014 Publication Graphics Recognition. Current Trends and Challenges Abbreviated Journal  
  Volume 8746 Issue Pages 49-58  
  Keywords Administrative Document Classification; Logo Recognition; Logo Spotting  
  Abstract This paper is focused on the categorization of administrative document images (such as invoices) based on the recognition of the supplier’s graphical logo. Two different methods are proposed, the first one uses a bag-of-visual-words model whereas the second one tries to locate logo images described by the blurred shape model descriptor within documents by a sliding-window technique. Preliminar results are reported with a dataset of real administrative documents.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor Bart Lamiroy; Jean-Marc Ogier  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-662-44853-3 Medium  
  Area Expedition Conference  
  Notes DAG; 600.056; 600.045; 605.203; 600.077 Approved no  
  Call Number Admin @ si @ RPK2014 Serial 2701  
Permanent link to this record
 

 
Author Suman Ghosh; Ernest Valveny edit   pdf
url  doi
openurl 
  Title Query by String word spotting based on character bi-gram indexing Type Conference Article
  Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 881-885  
  Keywords  
  Abstract In this paper we propose a segmentation-free query by string word spotting method. Both the documents and query strings are encoded using a recently proposed word representa- tion that projects images and strings into a common atribute space based on a pyramidal histogram of characters(PHOC). These attribute models are learned using linear SVMs over the Fisher Vector representation of the images along with the PHOC labels of the corresponding strings. In order to search through the whole page, document regions are indexed per character bi- gram using a similar attribute representation. On top of that, we propose an integral image representation of the document using a simplified version of the attribute model for efficient computation. Finally we introduce a re-ranking step in order to boost retrieval performance. We show state-of-the-art results for segmentation-free query by string word spotting in single-writer and multi-writer standard datasets  
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ GhV2015a Serial 2715  
Permanent link to this record
 

 
Author Suman Ghosh; Ernest Valveny edit   pdf
doi  isbn
openurl 
  Title A Sliding Window Framework for Word Spotting Based on Word Attributes Type Conference Article
  Year 2015 Publication Pattern Recognition and Image Analysis, Proceedings of 7th Iberian Conference , ibPRIA 2015 Abbreviated Journal  
  Volume 9117 Issue Pages 652-661  
  Keywords Word spotting; Sliding window; Word attributes  
  Abstract In this paper we propose a segmentation-free approach to word spotting. Word images are first encoded into feature vectors using Fisher Vector. Then, these feature vectors are used together with pyramidal histogram of characters labels (PHOC) to learn SVM-based attribute models. Documents are represented by these PHOC based word attributes. To efficiently compute the word attributes over a sliding window, we propose to use an integral image representation of the document using a simplified version of the attribute model. Finally we re-rank the top word candidates using the more discriminative full version of the word attributes. We show state-of-the-art results for segmentation-free query-by-example word spotting in single-writer and multi-writer standard datasets.  
  Address Santiago de Compostela; June 2015  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-319-19389-2 Medium  
  Area Expedition Conference IbPRIA  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ GhV2015b Serial 2716  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: