|
Records |
Links |
|
Author |
Anjan Dutta; Umapada Pal; Josep Llados |
|
|
Title |
Compact Correlated Features for Writer Independent Signature Verification |
Type |
Conference Article |
|
Year |
2016 |
Publication |
23rd International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This paper considers the offline signature verification problem which is considered to be an important research line in the field of pattern recognition. In this work we propose hybrid features that consider the local features and their global statistics in the signature image. This has been done by creating a vocabulary of histogram of oriented gradients (HOGs). We impose weights on these local features based on the height information of water reservoirs obtained from the signature. Spatial information between local features are thought to play a vital role in considering the geometry of the signatures which distinguishes the originals from the forged ones. Nevertheless, learning a condensed set of higher order neighbouring features based on visual words, e.g., doublets and triplets, continues to be a challenging problem as possible combinations of visual words grow exponentially. To avoid this explosion of size, we create a code of local pairwise features which are represented as joint descriptors. Local features are paired based on the edges of a graph representation built upon the Delaunay triangulation. We reveal the advantage of combining both type of visual codebooks (order one and pairwise) for signature verification task. This is validated through an encouraging result on two benchmark datasets viz. CEDAR and GPDS300. |
|
|
Address |
Cancun; Mexico; December 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG; 600.097 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DPL2016 |
Serial |
2875 |
|
Permanent link to this record |
|
|
|
|
Author |
Sounak Dey; Anguelos Nicolaou; Josep Llados; Umapada Pal |
|
|
Title |
Local Binary Pattern for Word Spotting in Handwritten Historical Document |
Type |
Conference Article |
|
Year |
2016 |
Publication |
Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
574-583 |
|
|
Keywords |
Local binary patterns; Spatial sampling; Learning-free; Word spotting; Handwritten; Historical document analysis; Large-scale data |
|
|
Abstract |
Digital libraries store images which can be highly degraded and to index this kind of images we resort to word spotting as our information retrieval system. Information retrieval for handwritten document images is more challenging due to the difficulties in complex layout analysis, large variations of writing styles, and degradation or low quality of historical manuscripts. This paper presents a simple innovative learning-free method for word spotting from large scale historical documents combining Local Binary Pattern (LBP) and spatial sampling. This method offers three advantages: firstly, it operates in completely learning free paradigm which is very different from unsupervised learning methods, secondly, the computational time is significantly low because of the LBP features, which are very fast to compute, and thirdly, the method can be used in scenarios where annotations are not available. Finally, we compare the results of our proposed retrieval method with other methods in the literature and we obtain the best results in the learning free paradigm. |
|
|
Address |
Merida; Mexico; December 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
S+SSPR |
|
|
Notes |
DAG; 600.097; 602.006; 603.053 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DNL2016 |
Serial |
2876 |
|
Permanent link to this record |
|
|
|
|
Author |
Juan Ignacio Toledo; Sebastian Sudholt; Alicia Fornes; Jordi Cucurull; A. Fink; Josep Llados |
|
|
Title |
Handwritten Word Image Categorization with Convolutional Neural Networks and Spatial Pyramid Pooling |
Type |
Conference Article |
|
Year |
2016 |
Publication |
Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR) |
Abbreviated Journal |
|
|
|
Volume |
10029 |
Issue |
|
Pages |
543-552 |
|
|
Keywords |
Document image analysis; Word image categorization; Convolutional neural networks; Named entity detection |
|
|
Abstract |
The extraction of relevant information from historical document collections is one of the key steps in order to make these documents available for access and searches. The usual approach combines transcription and grammars in order to extract semantically meaningful entities. In this paper, we describe a new method to obtain word categories directly from non-preprocessed handwritten word images. The method can be used to directly extract information, being an alternative to the transcription. Thus it can be used as a first step in any kind of syntactical analysis. The approach is based on Convolutional Neural Networks with a Spatial Pyramid Pooling layer to deal with the different shapes of the input images. We performed the experiments on a historical marriage record dataset, obtaining promising results. |
|
|
Address |
Merida; Mexico; December 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer International Publishing |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-3-319-49054-0 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
S+SSPR |
|
|
Notes |
DAG; 600.097; 602.006 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TSF2016 |
Serial |
2877 |
|
Permanent link to this record |
|
|
|
|
Author |
Albert Berenguel; Oriol Ramos Terrades; Josep Llados; Cristina Cañero |
|
|
Title |
Banknote counterfeit detection through background texture printing analysis |
Type |
Conference Article |
|
Year |
2016 |
Publication |
12th IAPR Workshop on Document Analysis Systems |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This paper is focused on the detection of counterfeit photocopy banknotes. The main difficulty is to work on a real industrial scenario without any constraint about the acquisition device and with a single image. The main contributions of this paper are twofold: first the adaptation and performance evaluation of existing approaches to classify the genuine and photocopy banknotes using background texture printing analysis, which have not been applied into this context before. Second, a new dataset of Euro banknotes images acquired with several cameras under different luminance conditions to evaluate these methods. Experiments on the proposed algorithms show that mixing SIFT features and sparse coding dictionaries achieves quasi perfect classification using a linear SVM with the created dataset. Approaches using dictionaries to cover all possible texture variations have demonstrated to be robust and outperform the state-of-the-art methods using the proposed benchmark. |
|
|
Address |
Rumania; May 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DAS |
|
|
Notes |
DAG; 600.061; 601.269; 600.097 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BRL2016 |
Serial |
2950 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Gomez; Dimosthenis Karatzas |
|
|
Title |
TextProposals: a Text‐specific Selective Search Algorithm for Word Spotting in the Wild |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
70 |
Issue |
|
Pages |
60-74 |
|
|
Keywords |
|
|
|
Abstract |
Motivated by the success of powerful while expensive techniques to recognize words in a holistic way (Goel et al., 2013; Almazán et al., 2014; Jaderberg et al., 2016) object proposals techniques emerge as an alternative to the traditional text detectors. In this paper we introduce a novel object proposals method that is specifically designed for text. We rely on a similarity based region grouping algorithm that generates a hierarchy of word hypotheses. Over the nodes of this hierarchy it is possible to apply a holistic word recognition method in an efficient way.
Our experiments demonstrate that the presented method is superior in its ability of producing good quality word proposals when compared with class-independent algorithms. We show impressive recall rates with a few thousand proposals in different standard benchmarks, including focused or incidental text datasets, and multi-language scenarios. Moreover, the combination of our object proposals with existing whole-word recognizers (Almazán et al., 2014; Jaderberg et al., 2016) shows competitive performance in end-to-end word spotting, and, in some benchmarks, outperforms previously published results. Concretely, in the challenging ICDAR2015 Incidental Text dataset, we overcome in more than 10% F-score the best-performing method in the last ICDAR Robust Reading Competition (Karatzas, 2015). Source code of the complete end-to-end system is available at https://github.com/lluisgomez/TextProposals. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.084; 601.197; 600.121; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GoK2017 |
Serial |
2886 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Gomez; Anguelos Nicolaou; Dimosthenis Karatzas |
|
|
Title |
Improving patch‐based scene text script identification with ensembles of conjoined networks |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
67 |
Issue |
|
Pages |
85-96 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.084; 600.121; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GNK2017 |
Serial |
2887 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Gomez; Y. Patel; Marçal Rusiñol; C.V. Jawahar; Dimosthenis Karatzas |
|
|
Title |
Self‐supervised learning of visual features through embedding images into text topic spaces |
Type |
Conference Article |
|
Year |
2017 |
Publication |
30th IEEE Conference on Computer Vision and Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
End-to-end training from scratch of current deep architectures for new computer vision problems would require Imagenet-scale datasets, and this is not always possible. In this paper we present a method that is able to take advantage of freely available multi-modal content to train computer vision algorithms without human supervision. We put forward the idea of performing self-supervised learning of visual features by mining a large scale corpus of multi-modal (text and image) documents. We show that discriminative visual features can be learnt efficiently by training a CNN to predict the semantic context in which a particular image is more probable to appear as an illustration. For this we leverage the hidden semantic structures discovered in the text corpus with a well-known topic modeling technique. Our experiments demonstrate state of the art performance in image classification, object detection, and multi-modal retrieval compared to recent self-supervised or natural-supervised approaches. |
|
|
Address |
Honolulu; Hawaii; July 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CVPR |
|
|
Notes |
DAG; 600.084; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GPR2017 |
Serial |
2889 |
|
Permanent link to this record |
|
|
|
|
Author |
Marc Sunset Perez; Marc Comino Trinidad; Dimosthenis Karatzas; Antonio Chica Calaf; Pere Pau Vazquez Alcocer |
|
|
Title |
Development of general‐purpose projection‐based augmented reality systems |
Type |
Journal |
|
Year |
2016 |
Publication |
IADIs international journal on computer science and information systems |
Abbreviated Journal |
IADIs |
|
|
Volume |
11 |
Issue |
2 |
Pages |
1-18 |
|
|
Keywords |
|
|
|
Abstract |
Despite the large amount of methods and applications of augmented reality, there is little homogenizatio n on the software platforms that support them. An exception may be the low level control software that is provided by some high profile vendors such as Qualcomm and Metaio. However, these provide fine grain modules for e.g. element tracking. We are more co ncerned on the application framework, that includes the control of the devices working together for the development of the AR experience. In this paper we describe the development of a software framework for AR setups. We concentrate on the modular design of the framework, but also on some hard problems such as the calibration stage, crucial for projection – based AR. The developed framework is suitable and has been tested in AR applications using camera – projector pairs, for both fixed and nomadic setups |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.084 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SCK2016 |
Serial |
2890 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Gomez |
|
|
Title |
Exploiting Similarity Hierarchies for Multi-script Scene Text Understanding |
Type |
Book Whole |
|
Year |
2016 |
Publication |
PhD Thesis, Universitat Autonoma de Barcelona-CVC |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This thesis addresses the problem of automatic scene text understanding in unconstrained conditions. In particular, we tackle the tasks of multi-language and arbitrary-oriented text detection, tracking, and script identification in natural scenes.
For this we have developed a set of generic methods that build on top of the basic observation that text has always certain key visual and structural characteristics that are independent of the language or script in which it is written. Text instances in any
language or script are always formed as groups of similar atomic parts, being them either individual characters, small stroke parts, or even whole words in the case of cursive text. This holistic (sumof-parts) and recursive perspective has lead us to explore different variants of the “segmentation and grouping” paradigm of computer vision.
Scene text detection methodologies are usually based in classification of individual regions or patches, using a priory knowledge for a given script or language. Human perception of text, on the other hand, is based on perceptual organization through which
text emerges as a perceptually significant group of atomic objects.
In this thesis, we argue that the text detection problem must be posed as the detection of meaningful groups of regions. We address the problem of text detection in natural scenes from a hierarchical perspective, making explicit use of the recursive nature of text, aiming directly to the detection of region groupings corresponding to text within a hierarchy produced by an agglomerative similarity clustering process over individual regions. We propose an optimal way to construct such an hierarchy introducing a feature space designed to produce text group hypothese with high recall and a novel stopping rule combining a discriminative classifier and a probabilistic measure of group meaningfulness based in perceptual organization. Within this generic framework, we design a text-specific object proposals algorithm that, contrary to existing generic object proposals methods, aims directly to the detection of text regions groupings. For this, we abandon the rigid definition of “what is text” of traditional specialized text detectors, and move towards more fuzzy perspective of grouping-based object proposals methods.
Then, we present a hybrid algorithm for detection and tracking of scene text where the notion of region groupings plays also a central role. By leveraging the structural arrangement of text group components between consecutive frames we can improve
the overall tracking performance of the system.
Finally, since our generic detection framework is inherently designed for multi-language environments, we focus on the problem of script identification in order to build a multi-language end-toend reading system. Facing this problem with state of the art CNN classifiers is not straightforward, as they fail to address a key
characteristic of scene text instances: their extremely variable aspect ratio. Instead of resizing input images to a fixed size as in the typical use of holistic CNN classifiers, we propose a patch-based classification framework in order to preserve discriminative parts of the image that are characteristic of its class. We describe a novel method based on the use of ensembles of conjoined networks to jointly learn discriminative stroke-parts representations and their relative importance in a patch-based classification scheme. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
Ph.D. thesis |
|
|
Publisher |
|
Place of Publication |
|
Editor |
Dimosthenis Karatzas |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ Gom2016 |
Serial |
2891 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; Josep Llados |
|
|
Title |
Flowchart Recognition in Patent Information Retrieval |
Type |
Book Chapter |
|
Year |
2017 |
Publication |
Current Challenges in Patent Information Retrieval |
Abbreviated Journal |
|
|
|
Volume |
37 |
Issue |
|
Pages |
351-368 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
M. Lupu; K. Mayer; N. Kando; A.J. Trippe |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.097; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RuL2017 |
Serial |
2896 |
|
Permanent link to this record |