toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Anguelos Nicolaou; Sounak Dey; V.Christlein; A.Maier; Dimosthenis Karatzas edit   pdf
url  openurl
  Title Non-deterministic Behavior of Ranking-based Metrics when Evaluating Embeddings Type Conference Article
  Year 2018 Publication International Workshop on Reproducible Research in Pattern Recognition Abbreviated Journal  
  Volume 11455 Issue Pages 71-82  
  Keywords  
  Abstract Embedding data into vector spaces is a very popular strategy of pattern recognition methods. When distances between embeddings are quantized, performance metrics become ambiguous. In this paper, we present an analysis of the ambiguity quantized distances introduce and provide bounds on the effect. We demonstrate that it can have a measurable effect in empirical data in state-of-the-art systems. We also approach the phenomenon from a computer security perspective and demonstrate how someone being evaluated by a third party can exploit this ambiguity and greatly outperform a random predictor without even access to the input data. We also suggest a simple solution making the performance metrics, which rely on ranking, totally deterministic and impervious to such exploits.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ NDC2018 Serial 3178  
Permanent link to this record
 

 
Author Dena Bazazian; Dimosthenis Karatzas; Andrew Bagdanov edit   pdf
doi  openurl
  Title Word Spotting in Scene Images based on Character Recognition Type Conference Article
  Year 2018 Publication IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue Pages 1872-1874  
  Keywords  
  Abstract In this paper we address the problem of unconstrained Word Spotting in scene images. We train a Fully Convolutional Network to produce heatmaps of all the character classes. Then, we employ the Text Proposals approach and, via a rectangle classifier, detect the most likely rectangle for each query word based on the character attribute maps. We evaluate the proposed method on ICDAR2015 and show that it is capable of identifying and recognizing query words in natural scene images.  
  Address Salt Lake City; USA; June 2018  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes DAG; 600.129; 600.121 Approved no  
  Call Number BKB2018a Serial 3179  
Permanent link to this record
 

 
Author Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados edit  doi
openurl 
  Title Automatic Verification of Properly Signed Multi-page Document Images Type Conference Article
  Year 2015 Publication Proceedings of the Eleventh International Symposium on Visual Computing Abbreviated Journal  
  Volume 9475 Issue Pages 327-336  
  Keywords Document Image; Manual Inspection; Signature Verification; Rejection Criterion; Document Flow  
  Abstract In this paper we present an industrial application for the automatic screening of incoming multi-page documents in a banking workflow aimed at determining whether these documents are properly signed or not. The proposed method is divided in three main steps. First individual pages are classified in order to identify the pages that should contain a signature. In a second step, we segment within those key pages the location where the signatures should appear. The last step checks whether the signatures are present or not. Our method is tested in a real large-scale environment and we report the results when checking two different types of real multi-page contracts, having in total more than 14,500 pages.  
  Address Las Vegas, Nevada, USA; December 2015  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume 9475 Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ISVC  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ Serial 3189  
Permanent link to this record
 

 
Author L. Rothacker; Marçal Rusiñol; Josep Llados; G.A. Fink edit  url
openurl 
  Title A Two-stage Approach to Segmentation-Free Query-by-example Word Spotting Type Journal
  Year 2014 Publication Manuscript Cultures Abbreviated Journal  
  Volume 7 Issue Pages 47-58  
  Keywords  
  Abstract With the ongoing progress in digitization, huge document collections and archives have become available to a broad audience. Scanned document images can be transmitted electronically and studied simultaneously throughout the world. While this is very beneficial, it is often impossible to perform automated searches on these document collections. Optical character recognition usually fails when it comes to handwritten or historic documents. In order to address the need for exploring document collections rapidly, researchers are working on word spotting. In query-by-example word spotting scenarios, the user selects an exemplary occurrence of the query word in a document image. The word spotting system then retrieves all regions in the collection that are visually similar to the given example of the query word. The best matching regions are presented to the user and no actual transcription is required.
An important property of a word spotting system is the computational speed with which queries can be executed. In our previous work, we presented a relatively slow but high-precision method. In the present work, we will extend this baseline system to an integrated two-stage approach. In a coarse-grained first stage, we will filter document images efficiently in order to identify regions that are likely to contain the query word. In the fine-grained second stage, these regions will be analyzed with our previously presented high-precision method. Finally, we will report recognition results and query times for the well-known George Washington
benchmark in our evaluation. We achieve state-of-the-art recognition results while the query times can be reduced to 50% in comparison with our baseline.
 
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.061; 600.077 Approved no  
  Call Number Admin @ si @ Serial 3190  
Permanent link to this record
 

 
Author Giacomo Magnifico; Beata Megyesi; Mohamed Ali Souibgui; Jialuo Chen; Alicia Fornes edit   pdf
url  openurl
  Title Lost in Transcription of Graphic Signs in Ciphers Type Conference Article
  Year 2022 Publication International Conference on Historical Cryptology (HistoCrypt 2022) Abbreviated Journal  
  Volume Issue Pages 153-158  
  Keywords transcription of ciphers; hand-written text recognition of symbols; graphic signs  
  Abstract Hand-written Text Recognition techniques with the aim to automatically identify and transcribe hand-written text have been applied to historical sources including ciphers. In this paper, we compare the performance of two machine learning architectures, an unsupervised method based on clustering and a deep learning method with few-shot learning. Both models are tested on seen and unseen data from historical ciphers with different symbol sets consisting of various types of graphic signs. We compare the models and highlight their differences in performance, with their advantages and shortcomings.  
  Address Amsterdam, Netherlands, June 20-22, 2022  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference HystoCrypt  
  Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no  
  Call Number Admin @ si @ MBS2022 Serial 3731  
Permanent link to this record
 

 
Author Ilke Demir; Dena Bazazian; Adriana Romero; Viktoriia Sharmanska; Lyne P. Tchapmi edit   pdf
doi  openurl
  Title WiCV 2018: The Fourth Women In Computer Vision Workshop Type Conference Article
  Year 2018 Publication 4th Women in Computer Vision Workshop Abbreviated Journal  
  Volume Issue Pages 1941-19412  
  Keywords Conferences; Computer vision; Industries; Object recognition; Engineering profession; Collaboration; Machine learning  
  Abstract We present WiCV 2018 – Women in Computer Vision Workshop to increase the visibility and inclusion of women researchers in computer vision field, organized in conjunction with CVPR 2018. Computer vision and machine learning have made incredible progress over the past years, yet the number of female researchers is still low both in academia and industry. WiCV is organized to raise visibility of female researchers, to increase the collaboration,
and to provide mentorship and give opportunities to femaleidentifying junior researchers in the field. In its fourth year, we are proud to present the changes and improvements over the past years, summary of statistics for presenters and attendees, followed by expectations from future generations.
 
  Address Salt Lake City; USA; June 2018  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WiCV  
  Notes DAG; 600.121; 600.129;MILAB Approved no  
  Call Number Admin @ si @ DBR2018 Serial 3222  
Permanent link to this record
 

 
Author Arnau Baro; Pau Riba; Alicia Fornes edit   pdf
openurl 
  Title A Starting Point for Handwritten Music Recognition Type Conference Article
  Year 2018 Publication 1st International Workshop on Reading Music Systems Abbreviated Journal  
  Volume Issue Pages 5-6  
  Keywords Optical Music Recognition; Long Short-Term Memory; Convolutional Neural Networks; MUSCIMA++; CVCMUSCIMA  
  Abstract In the last years, the interest in Optical Music Recognition (OMR) has reawakened, especially since the appearance of deep learning. However, there are very few works addressing handwritten scores. In this work we describe a full OMR pipeline for handwritten music scores by using Convolutional and Recurrent Neural Networks that could serve as a baseline for the research community.  
  Address Paris; France; September 2018  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WORMS  
  Notes DAG; 600.097; 601.302; 601.330; 600.121 Approved no  
  Call Number Admin @ si @ BRF2018 Serial 3223  
Permanent link to this record
 

 
Author Anjan Dutta; Hichem Sahbi edit   pdf
doi  openurl
  Title Stochastic Graphlet Embedding Type Journal Article
  Year 2018 Publication IEEE Transactions on Neural Networks and Learning Systems Abbreviated Journal TNNLS  
  Volume Issue Pages 1-14  
  Keywords Stochastic graphlets; Graph embedding; Graph classification; Graph hashing; Betweenness centrality  
  Abstract Graph-based methods are known to be successful in many machine learning and pattern classification tasks. These methods consider semi-structured data as graphs where nodes correspond to primitives (parts, interest points, segments,
etc.) and edges characterize the relationships between these primitives. However, these non-vectorial graph data cannot be straightforwardly plugged into off-the-shelf machine learning algorithms without a preliminary step of – explicit/implicit –graph vectorization and embedding. This embedding process
should be resilient to intra-class graph variations while being highly discriminant. In this paper, we propose a novel high-order stochastic graphlet embedding (SGE) that maps graphs into vector spaces. Our main contribution includes a new stochastic search procedure that efficiently parses a given graph and extracts/samples unlimitedly high-order graphlets. We consider
these graphlets, with increasing orders, to model local primitives as well as their increasingly complex interactions. In order to build our graph representation, we measure the distribution of these graphlets into a given graph, using particular hash functions that efficiently assign sampled graphlets into isomorphic sets with a very low probability of collision. When
combined with maximum margin classifiers, these graphlet-based representations have positive impact on the performance of pattern comparison and recognition as corroborated through extensive experiments using standard benchmark databases.
 
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 602.167; 602.168; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ DuS2018 Serial 3225  
Permanent link to this record
 

 
Author Lasse Martensson; Ekta Vats; Anders Hast; Alicia Fornes edit  url
openurl 
  Title In Search of the Scribe: Letter Spotting as a Tool for Identifying Scribes in Large Handwritten Text Corpora Type Journal
  Year 2019 Publication Journal for Information Technology Studies as a Human Science Abbreviated Journal HUMAN IT  
  Volume 14 Issue 2 Pages 95-120  
  Keywords Scribal attribution/ writer identification; digital palaeography; word spotting; mediaeval charters; mediaeval manuscripts  
  Abstract In this article, a form of the so-called word spotting-method is used on a large set of handwritten documents in order to identify those that contain script of similar execution. The point of departure for the investigation is the mediaeval Swedish manuscript Cod. Holm. D 3. The main scribe of this manuscript has yet not been identified in other documents. The current attempt aims at localising other documents that display a large degree of similarity in the characteristics of the script, these being possible candidates for being executed by the same hand. For this purpose, the method of word spotting has been employed, focusing on individual letters, and therefore the process is referred to as letter spotting in the article. In this process, a set of ‘g’:s, ‘h’:s and ‘k’:s have been selected as templates, and then a search has been made for close matches among the mediaeval Swedish charters. The search resulted in a number of charters that displayed great similarities with the manuscript D 3. The used letter spotting method thus proofed to be a very efficient sorting tool localising similar script samples.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ MVH2019 Serial 3234  
Permanent link to this record
 

 
Author Marçal Rusiñol; Lluis Gomez edit   pdf
openurl 
  Title Avances en clasificación de imágenes en los últimos diez años. Perspectivas y limitaciones en el ámbito de archivos fotográficos históricos Type Journal
  Year 2018 Publication Revista anual de la Asociación de Archiveros de Castilla y León Abbreviated Journal  
  Volume 21 Issue Pages 161-174  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ RuG2018 Serial 3239  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: