toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Ernest Valveny; Enric Marti edit  openurl
  Title Dimensions analysis in hand-drawn architectural drawings Type Conference Article
  Year 1997 Publication (SNRFAI’97) 7th Spanish National Symposium on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume Issue Pages 90-91  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (down) Place of Publication CVC-UAB Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG;IAM; Approved no  
  Call Number IAM @ iam @ VAM1997 Serial 1659  
Permanent link to this record
 

 
Author Ernest Valveny; Ricardo Toledo; Ramon Baldrich; Enric Marti edit  openurl
  Title Combining recognition-based in segmentation-based approaches for graphic symol recognition using deformable template matching Type Conference Article
  Year 2002 Publication Proceeding of the Second IASTED International Conference Visualization, Imaging and Image Proceesing VIIP 2002 Abbreviated Journal  
  Volume Issue Pages 502–507  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (down) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG;RV;CAT;IAM;CIC;ADAS Approved no  
  Call Number IAM @ iam @ VTB2002 Serial 1660  
Permanent link to this record
 

 
Author Palaiahnakote Shivakumara; Anjan Dutta; Trung Quy Phan; Chew Lim Tan; Umapada Pal edit  doi
openurl 
  Title A Novel Mutual Nearest Neighbor based Symmetry for Text Frame Classification in Video Type Journal Article
  Year 2011 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 44 Issue 8 Pages 1671-1683  
  Keywords  
  Abstract In the field of multimedia retrieval in video, text frame classification is essential for text detection, event detection, event boundary detection, etc. We propose a new text frame classification method that introduces a combination of wavelet and median moment with k-means clustering to select probable text blocks among 16 equally sized blocks of a video frame. The same feature combination is used with a new Max–Min clustering at the pixel level to choose probable dominant text pixels in the selected probable text blocks. For the probable text pixels, a so-called mutual nearest neighbor based symmetry is explored with a four-quadrant formation centered at the centroid of the probable dominant text pixels to know whether a block is a true text block or not. If a frame produces at least one true text block then it is considered as a text frame otherwise it is a non-text frame. Experimental results on different text and non-text datasets including two public datasets and our own created data show that the proposed method gives promising results in terms of recall and precision at the block and frame levels. Further, we also show how existing text detection methods tend to misclassify non-text frames as text frames in term of recall and precision at both the block and frame levels.  
  Address  
  Corporate Author Thesis  
  Publisher (down) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ SDP2011 Serial 1727  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Gemma Sanchez edit  doi
isbn  openurl
  Title And-Or Graph Grammar for Architectural Floorplan Representation, Learning and Recognition. A Semantic, Structural and Hierarchical Model Type Conference Article
  Year 2011 Publication 5th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume 6669 Issue Pages 17-24  
  Keywords  
  Abstract This paper presents a syntactic model for architectural floor plan interpretation. A stochastic image grammar over an And-Or graph is inferred to represent the hierarchical, structural and semantic relations between elements of all possible floor plans. This grammar is augmented with three different probabilistic models, learnt from a training set, to account the frequency of that relations. Then, a Bottom-Up/Top-Down parser with a pruning strategy has been used for floor plan recognition. For a given input, the parser generates the most probable parse graph for that document. This graph not only contains the structural and semantic relations of its elements, but also its hierarchical composition, that allows to interpret the floor plan at different levels of abstraction.  
  Address Las Palmas de Gran Canaria. Spain  
  Corporate Author Thesis  
  Publisher (down) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-21256-7 Medium  
  Area Expedition Conference IbPRIA  
  Notes DAG Approved no  
  Call Number Admin @ si @ HeS2011 Serial 1736  
Permanent link to this record
 

 
Author David Fernandez; Josep Llados; Alicia Fornes edit  doi
isbn  openurl
  Title Handwritten Word Spotting in Old Manuscript Images Using a Pseudo-Structural Descriptor Organized in a Hash Structure Type Conference Article
  Year 2011 Publication 5th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume 6669 Issue Pages 628-635  
  Keywords  
  Abstract There are lots of historical handwritten documents with information that can be used for several studies and projects. The Document Image Analysis and Recognition community is interested in preserving these documents and extracting all the valuable information from them. Handwritten word-spotting is the pattern classification task which consists in detecting handwriting word images. In this work, we have used a query-by-example formalism: we have matched an input image with one or multiple images from handwritten documents to determine the distance that might indicate a correspondence. We have developed an approach based in characteristic Loci Features stored in a hash structure. Document images of the marriage licences of the Cathedral of Barcelona are used as the benchmarking database.  
  Address Las Palmas de Gran Canaria. Spain  
  Corporate Author Thesis  
  Publisher (down) Place of Publication Editor Jordi Vitria; Joao Miguel Raposo; Mario Hernandez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-21256-7 Medium  
  Area Expedition Conference IbPRIA  
  Notes DAG Approved no  
  Call Number Admin @ si @ FLF2011 Serial 1742  
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny; Horst Bunke edit  doi
isbn  openurl
  Title Dimensionality Reduction for Graph of Words Embedding Type Conference Article
  Year 2011 Publication 8th IAPR-TC-15 International Workshop. Graph-Based Representations in Pattern Recognition Abbreviated Journal  
  Volume 6658 Issue Pages 22-31  
  Keywords  
  Abstract The Graph of Words Embedding consists in mapping every graph of a given dataset to a feature vector by counting unary and binary relations between node attributes of the graph. While it shows good properties in classification problems, it suffers from high dimensionality and sparsity. These two issues are addressed in this article. Two well-known techniques for dimensionality reduction, kernel principal component analysis (kPCA) and independent component analysis (ICA), are applied to the embedded graphs. We discuss their performance compared to the classification of the original vectors on three different public databases of graphs.  
  Address Münster, Germany  
  Corporate Author Thesis  
  Publisher (down) Place of Publication Editor Xiaoyi Jiang; Miquel Ferrer; Andrea Torsello  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-20843-0 Medium  
  Area Expedition Conference GbRPR  
  Notes DAG Approved no  
  Call Number Admin @ si @ GVB2011a Serial 1743  
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny; Oriol Ramos Terrades; Horst Bunke edit  doi
isbn  openurl
  Title Multiple Classifiers for Graph of Words Embedding Type Conference Article
  Year 2011 Publication 10th International Conference on Multiple Classifier Systems Abbreviated Journal  
  Volume 6713 Issue Pages 36-45  
  Keywords  
  Abstract During the last years, there has been an increasing interest in applying the multiple classifier framework to the domain of structural pattern recognition. Constructing base classifiers when the input patterns are graph based representations is not an easy problem. In this work, we make use of the graph embedding methodology in order to construct different feature vector representations for graphs. The graph of words embedding assigns a feature vector to every graph by counting unary and binary relations between node representatives and combining these pieces of information into a single vector. Selecting different node representatives leads to different vectorial representations and therefore to different base classifiers that can be combined. We experimentally show how this methodology significantly improves the classification of graphs with respect to single base classifiers.  
  Address Napoles, Italy  
  Corporate Author Thesis  
  Publisher (down) Place of Publication Editor Carlo Sansone; Josef Kittler; Fabio Roli  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-21556-8 Medium  
  Area Expedition Conference MCS  
  Notes DAG Approved no  
  Call Number Admin @ si @GVR2011 Serial 1745  
Permanent link to this record
 

 
Author Jon Almazan; Alicia Fornes; Ernest Valveny edit  url
doi  isbn
openurl 
  Title A Non-Rigid Feature Extraction Method for Shape Recognition Type Conference Article
  Year 2011 Publication 11th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 987-991  
  Keywords  
  Abstract This paper presents a methodology for shape recognition that focuses on dealing with the difficult problem of large deformations. The proposed methodology consists in a novel feature extraction technique, which uses a non-rigid representation adaptable to the shape. This technique employs a deformable grid based on the computation of geometrical centroids that follows a region partitioning algorithm. Then, a feature vector is extracted by computing pixel density measures around these geometrical centroids. The result is a shape descriptor that adapts its representation to the given shape and encodes the pixel density distribution. The validity of the method when dealing with large deformations has been experimentally shown over datasets composed of handwritten shapes. It has been applied to signature verification and shape recognition tasks demonstrating high accuracy and low computational cost.  
  Address Beijing; China; September 2011  
  Corporate Author Thesis  
  Publisher (down) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-7695-4520-2 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ AFV2011 Serial 1763  
Permanent link to this record
 

 
Author Marçal Rusiñol; R.Roset; Josep Llados; C.Montaner edit  openurl
  Title Automatic Index Generation of Digitized Map Series by Coordinate Extraction and Interpretation Type Journal
  Year 2011 Publication e-Perimetron Abbreviated Journal ePER  
  Volume 6 Issue 4 Pages 219-229  
  Keywords  
  Abstract By means of computer vision algorithms scanned images of maps are processed in order to extract relevant geographic information from printed coordinate pairs. The meaningful information is then transformed into georeferencing information for each single map sheet, and the complete set is compiled to produce a graphical index sheet for the map series along with relevant metadata. The whole process is fully automated and trained to attain maximum effectivity and throughput.  
  Address  
  Corporate Author Thesis  
  Publisher (down) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ RRL2011a Serial 1765  
Permanent link to this record
 

 
Author Sergio Escalera; Alicia Fornes; Oriol Pujol; Josep Llados; Petia Radeva edit  doi
openurl 
  Title Circular Blurred Shape Model for Multiclass Symbol Recognition Type Journal Article
  Year 2011 Publication IEEE Transactions on Systems, Man and Cybernetics (Part B) (IEEE) Abbreviated Journal TSMCB  
  Volume 41 Issue 2 Pages 497-506  
  Keywords  
  Abstract In this paper, we propose a circular blurred shape model descriptor to deal with the problem of symbol detection and classification as a particular case of object recognition. The feature extraction is performed by capturing the spatial arrangement of significant object characteristics in a correlogram structure. The shape information from objects is shared among correlogram regions, where a prior blurring degree defines the level of distortion allowed in the symbol, making the descriptor tolerant to irregular deformations. Moreover, the descriptor is rotation invariant by definition. We validate the effectiveness of the proposed descriptor in both the multiclass symbol recognition and symbol detection domains. In order to perform the symbol detection, the descriptors are learned using a cascade of classifiers. In the case of multiclass categorization, the new feature space is learned using a set of binary classifiers which are embedded in an error-correcting output code design. The results over four symbol data sets show the significant improvements of the proposed descriptor compared to the state-of-the-art descriptors. In particular, the results are even more significant in those cases where the symbols suffer from elastic deformations.  
  Address  
  Corporate Author Thesis  
  Publisher (down) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1083-4419 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; DAG;HuPBA Approved no  
  Call Number Admin @ si @ EFP2011 Serial 1784  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: