toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Anguelos Nicolaou; Sounak Dey; V.Christlein; A.Maier; Dimosthenis Karatzas edit   pdf
url  openurl
  Title Non-deterministic Behavior of Ranking-based Metrics when Evaluating Embeddings Type Conference Article
  Year 2018 Publication International Workshop on Reproducible Research in Pattern Recognition Abbreviated Journal  
  Volume 11455 Issue Pages 71-82  
  Keywords  
  Abstract Embedding data into vector spaces is a very popular strategy of pattern recognition methods. When distances between embeddings are quantized, performance metrics become ambiguous. In this paper, we present an analysis of the ambiguity quantized distances introduce and provide bounds on the effect. We demonstrate that it can have a measurable effect in empirical data in state-of-the-art systems. We also approach the phenomenon from a computer security perspective and demonstrate how someone being evaluated by a third party can exploit this ambiguity and greatly outperform a random predictor without even access to the input data. We also suggest a simple solution making the performance metrics, which rely on ranking, totally deterministic and impervious to such exploits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ NDC2018 Serial 3178  
Permanent link to this record
 

 
Author Dena Bazazian; Dimosthenis Karatzas; Andrew Bagdanov edit   pdf
doi  openurl
  Title Word Spotting in Scene Images based on Character Recognition Type Conference Article
  Year 2018 Publication IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue Pages 1872-1874  
  Keywords  
  Abstract In this paper we address the problem of unconstrained Word Spotting in scene images. We train a Fully Convolutional Network to produce heatmaps of all the character classes. Then, we employ the Text Proposals approach and, via a rectangle classifier, detect the most likely rectangle for each query word based on the character attribute maps. We evaluate the proposed method on ICDAR2015 and show that it is capable of identifying and recognizing query words in natural scene images.  
  Address Salt Lake City; USA; June 2018  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes DAG; 600.129; 600.121 Approved no  
  Call Number BKB2018a Serial 3179  
Permanent link to this record
 

 
Author Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados edit  doi
openurl 
  Title Automatic Verification of Properly Signed Multi-page Document Images Type Conference Article
  Year 2015 Publication Proceedings of the Eleventh International Symposium on Visual Computing Abbreviated Journal  
  Volume 9475 Issue Pages 327-336  
  Keywords Document Image; Manual Inspection; Signature Verification; Rejection Criterion; Document Flow  
  Abstract In this paper we present an industrial application for the automatic screening of incoming multi-page documents in a banking workflow aimed at determining whether these documents are properly signed or not. The proposed method is divided in three main steps. First individual pages are classified in order to identify the pages that should contain a signature. In a second step, we segment within those key pages the location where the signatures should appear. The last step checks whether the signatures are present or not. Our method is tested in a real large-scale environment and we report the results when checking two different types of real multi-page contracts, having in total more than 14,500 pages.  
  Address Las Vegas, Nevada, USA; December 2015  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume 9475 Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ISVC  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ Serial 3189  
Permanent link to this record
 

 
Author L. Rothacker; Marçal Rusiñol; Josep Llados; G.A. Fink edit  url
openurl 
  Title A Two-stage Approach to Segmentation-Free Query-by-example Word Spotting Type Journal
  Year 2014 Publication Manuscript Cultures Abbreviated Journal  
  Volume 7 Issue Pages 47-58  
  Keywords  
  Abstract With the ongoing progress in digitization, huge document collections and archives have become available to a broad audience. Scanned document images can be transmitted electronically and studied simultaneously throughout the world. While this is very beneficial, it is often impossible to perform automated searches on these document collections. Optical character recognition usually fails when it comes to handwritten or historic documents. In order to address the need for exploring document collections rapidly, researchers are working on word spotting. In query-by-example word spotting scenarios, the user selects an exemplary occurrence of the query word in a document image. The word spotting system then retrieves all regions in the collection that are visually similar to the given example of the query word. The best matching regions are presented to the user and no actual transcription is required.
An important property of a word spotting system is the computational speed with which queries can be executed. In our previous work, we presented a relatively slow but high-precision method. In the present work, we will extend this baseline system to an integrated two-stage approach. In a coarse-grained first stage, we will filter document images efficiently in order to identify regions that are likely to contain the query word. In the fine-grained second stage, these regions will be analyzed with our previously presented high-precision method. Finally, we will report recognition results and query times for the well-known George Washington
benchmark in our evaluation. We achieve state-of-the-art recognition results while the query times can be reduced to 50% in comparison with our baseline.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.061; 600.077 Approved no  
  Call Number Admin @ si @ Serial 3190  
Permanent link to this record
 

 
Author Giacomo Magnifico; Beata Megyesi; Mohamed Ali Souibgui; Jialuo Chen; Alicia Fornes edit   pdf
url  openurl
  Title Lost in Transcription of Graphic Signs in Ciphers Type Conference Article
  Year 2022 Publication International Conference on Historical Cryptology (HistoCrypt 2022) Abbreviated Journal  
  Volume Issue Pages 153-158  
  Keywords transcription of ciphers; hand-written text recognition of symbols; graphic signs  
  Abstract Hand-written Text Recognition techniques with the aim to automatically identify and transcribe hand-written text have been applied to historical sources including ciphers. In this paper, we compare the performance of two machine learning architectures, an unsupervised method based on clustering and a deep learning method with few-shot learning. Both models are tested on seen and unseen data from historical ciphers with different symbol sets consisting of various types of graphic signs. We compare the models and highlight their differences in performance, with their advantages and shortcomings.  
  Address Amsterdam, Netherlands, June 20-22, 2022  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference HystoCrypt  
  Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no  
  Call Number Admin @ si @ MBS2022 Serial 3731  
Permanent link to this record
 

 
Author Pau Riba; Lutz Goldmann; Oriol Ramos Terrades; Diede Rusticus; Alicia Fornes; Josep Llados edit  doi
openurl 
  Title Table detection in business document images by message passing networks Type Journal Article
  Year 2022 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 127 Issue Pages 108641  
  Keywords  
  Abstract Tabular structures in business documents offer a complementary dimension to the raw textual data. For instance, there is information about the relationships among pieces of information. Nowadays, digital mailroom applications have become a key service for workflow automation. Therefore, the detection and interpretation of tables is crucial. With the recent advances in information extraction, table detection and recognition has gained interest in document image analysis, in particular, with the absence of rule lines and unknown information about rows and columns. However, business documents usually contain sensitive contents limiting the amount of public benchmarking datasets. In this paper, we propose a graph-based approach for detecting tables in document images which do not require the raw content of the document. Hence, the sensitive content can be previously removed and, instead of using the raw image or textual content, we propose a purely structural approach to keep sensitive data anonymous. Our framework uses graph neural networks (GNNs) to describe the local repetitive structures that constitute a table. In particular, our main application domain are business documents. We have carefully validated our approach in two invoice datasets and a modern document benchmark. Our experiments demonstrate that tables can be detected by purely structural approaches.  
  Address July 2022  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.162; 600.121 Approved no  
  Call Number Admin @ si @ RGR2022 Serial 3729  
Permanent link to this record
 

 
Author Suman Ghosh edit  isbn
openurl 
  Title Word Spotting and Recognition in Images from Heterogeneous Sources A Type Book Whole
  Year 2018 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Text is the most common way of information sharing from ages. With recent development of personal images databases and handwritten historic manuscripts the demand for algorithms to make these databases accessible for browsing and indexing are in rise. Enabling search or understanding large collection of manuscripts or image databases needs fast and robust methods. Researchers have found different ways to represent cropped words for understanding and matching, which works well when words are already segmented. However there is no trivial way to extend these for non-segmented documents. In this thesis we explore different methods for text retrieval and recognition from unsegmented document and scene images. Two different ways of representation exist in literature, one uses a fixed length representation learned from cropped words and another a sequence of features of variable length. Throughout this thesis, we have studied both these representation for their suitability in segmentation free understanding of text. In the first part we are focused on segmentation free word spotting using a fixed length representation. We extended the use of the successful PHOC (Pyramidal Histogram of Character) representation to segmentation free retrieval. In the second part of the thesis, we explore sequence based features and finally, we propose a unified solution where the same framework can generate both kind of representations.  
  Address November 2018  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication (up) Editor Ernest Valveny  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-948531-0-4 Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ Gho2018 Serial 3217  
Permanent link to this record
 

 
Author Ilke Demir; Dena Bazazian; Adriana Romero; Viktoriia Sharmanska; Lyne P. Tchapmi edit   pdf
doi  openurl
  Title WiCV 2018: The Fourth Women In Computer Vision Workshop Type Conference Article
  Year 2018 Publication 4th Women in Computer Vision Workshop Abbreviated Journal  
  Volume Issue Pages 1941-19412  
  Keywords Conferences; Computer vision; Industries; Object recognition; Engineering profession; Collaboration; Machine learning  
  Abstract We present WiCV 2018 – Women in Computer Vision Workshop to increase the visibility and inclusion of women researchers in computer vision field, organized in conjunction with CVPR 2018. Computer vision and machine learning have made incredible progress over the past years, yet the number of female researchers is still low both in academia and industry. WiCV is organized to raise visibility of female researchers, to increase the collaboration,
and to provide mentorship and give opportunities to femaleidentifying junior researchers in the field. In its fourth year, we are proud to present the changes and improvements over the past years, summary of statistics for presenters and attendees, followed by expectations from future generations.
 
  Address Salt Lake City; USA; June 2018  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WiCV  
  Notes DAG; 600.121; 600.129;MILAB Approved no  
  Call Number Admin @ si @ DBR2018 Serial 3222  
Permanent link to this record
 

 
Author Arnau Baro; Pau Riba; Alicia Fornes edit   pdf
openurl 
  Title A Starting Point for Handwritten Music Recognition Type Conference Article
  Year 2018 Publication 1st International Workshop on Reading Music Systems Abbreviated Journal  
  Volume Issue Pages 5-6  
  Keywords Optical Music Recognition; Long Short-Term Memory; Convolutional Neural Networks; MUSCIMA++; CVCMUSCIMA  
  Abstract In the last years, the interest in Optical Music Recognition (OMR) has reawakened, especially since the appearance of deep learning. However, there are very few works addressing handwritten scores. In this work we describe a full OMR pipeline for handwritten music scores by using Convolutional and Recurrent Neural Networks that could serve as a baseline for the research community.  
  Address Paris; France; September 2018  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WORMS  
  Notes DAG; 600.097; 601.302; 601.330; 600.121 Approved no  
  Call Number Admin @ si @ BRF2018 Serial 3223  
Permanent link to this record
 

 
Author Anjan Dutta; Hichem Sahbi edit   pdf
doi  openurl
  Title Stochastic Graphlet Embedding Type Journal Article
  Year 2018 Publication IEEE Transactions on Neural Networks and Learning Systems Abbreviated Journal TNNLS  
  Volume Issue Pages 1-14  
  Keywords Stochastic graphlets; Graph embedding; Graph classification; Graph hashing; Betweenness centrality  
  Abstract Graph-based methods are known to be successful in many machine learning and pattern classification tasks. These methods consider semi-structured data as graphs where nodes correspond to primitives (parts, interest points, segments,
etc.) and edges characterize the relationships between these primitives. However, these non-vectorial graph data cannot be straightforwardly plugged into off-the-shelf machine learning algorithms without a preliminary step of – explicit/implicit –graph vectorization and embedding. This embedding process
should be resilient to intra-class graph variations while being highly discriminant. In this paper, we propose a novel high-order stochastic graphlet embedding (SGE) that maps graphs into vector spaces. Our main contribution includes a new stochastic search procedure that efficiently parses a given graph and extracts/samples unlimitedly high-order graphlets. We consider
these graphlets, with increasing orders, to model local primitives as well as their increasingly complex interactions. In order to build our graph representation, we measure the distribution of these graphlets into a given graph, using particular hash functions that efficiently assign sampled graphlets into isomorphic sets with a very low probability of collision. When
combined with maximum margin classifiers, these graphlet-based representations have positive impact on the performance of pattern comparison and recognition as corroborated through extensive experiments using standard benchmark databases.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 602.167; 602.168; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ DuS2018 Serial 3225  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: