toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author P. Wang; V. Eglin; C. Garcia; C. Largeron; Josep Llados; Alicia Fornes edit   pdf
doi  isbn
openurl 
  Title A Novel Learning-free Word Spotting Approach Based on Graph Representation Type Conference Article
  Year 2014 Publication 11th IAPR International Workshop on Document Analysis and Systems Abbreviated Journal  
  Volume Issue Pages 207-211  
  Keywords  
  Abstract Effective information retrieval on handwritten document images has always been a challenging task. In this paper, we propose a novel handwritten word spotting approach based on graph representation. The presented model comprises both topological and morphological signatures of handwriting. Skeleton-based graphs with the Shape Context labelled vertexes are established for connected components. Each word image is represented as a sequence of graphs. In order to be robust to the handwriting variations, an exhaustive merging process based on DTW alignment result is introduced in the similarity measure between word images. With respect to the computation complexity, an approximate graph edit distance approach using bipartite matching is employed for graph matching. The experiments on the George Washington dataset and the marriage records from the Barcelona Cathedral dataset demonstrate that the proposed approach outperforms the state-of-the-art structural methods.  
  Address Tours; France; April 2014  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4799-3243-6 Medium  
  Area Expedition Conference DAS  
  Notes DAG; 600.061; 602.006; 600.077 Approved no  
  Call Number Admin @ si @ WEG2014b Serial 2517  
Permanent link to this record
 

 
Author Marçal Rusiñol; Volkmar Frinken; Dimosthenis Karatzas; Andrew Bagdanov; Josep Llados edit  doi
openurl 
  Title Multimodal page classification in administrative document image streams Type Journal Article
  Year 2014 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 17 Issue 4 Pages 331-341  
  Keywords Digital mail room; Multimodal page classification; Visual and textual document description  
  Abstract In this paper, we present a page classification application in a banking workflow. The proposed architecture represents administrative document images by merging visual and textual descriptions. The visual description is based on a hierarchical representation of the pixel intensity distribution. The textual description uses latent semantic analysis to represent document content as a mixture of topics. Several off-the-shelf classifiers and different strategies for combining visual and textual cues have been evaluated. A final step uses an n-gram model of the page stream allowing a finer-grained classification of pages. The proposed method has been tested in a real large-scale environment and we report results on a dataset of 70,000 pages.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; LAMP; 600.056; 600.061; 601.240; 601.223; 600.077; 600.079 Approved no  
  Call Number Admin @ si @ RFK2014 Serial 2523  
Permanent link to this record
 

 
Author Francisco Cruz; Oriol Ramos Terrades edit   pdf
doi  openurl
  Title EM-Based Layout Analysis Method for Structured Documents Type Conference Article
  Year 2014 Publication 22nd International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 315-320  
  Keywords  
  Abstract In this paper we present a method to perform layout analysis in structured documents. We proposed an EM-based algorithm to fit a set of Gaussian mixtures to the different regions according to the logical distribution along the page. After the convergence, we estimate the final shape of the regions according
to the parameters computed for each component of the mixture. We evaluated our method in the task of record detection in a collection of historical structured documents and performed a comparison with other previous works in this task.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 602.006; 600.061; 600.077 Approved no  
  Call Number Admin @ si @ CrR2014 Serial 2530  
Permanent link to this record
 

 
Author Francisco Alvaro; Francisco Cruz; Joan Andreu Sanchez; Oriol Ramos Terrades; Jose Miguel Benedi edit   pdf
doi  openurl
  Title Structure Detection and Segmentation of Documents Using 2D Stochastic Context-Free Grammars Type Journal Article
  Year 2015 Publication Neurocomputing Abbreviated Journal NEUCOM  
  Volume 150 Issue A Pages 147-154  
  Keywords document image analysis; stochastic context-free grammars; text classi cation features  
  Abstract In this paper we de ne a bidimensional extension of Stochastic Context-Free Grammars for structure detection and segmentation of images of documents.
Two sets of text classi cation features are used to perform an initial classi cation of each zone of the page. Then, the document segmentation is obtained as the most likely hypothesis according to a stochastic grammar. We used a dataset of historical marriage license books to validate this approach. We also tested several inference algorithms for Probabilistic Graphical Models
and the results showed that the proposed grammatical model outperformed
the other methods. Furthermore, grammars also provide the document structure
along with its segmentation.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 601.158; 600.077; 600.061 Approved no  
  Call Number Admin @ si @ ACS2015 Serial 2531  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Ernest Valveny; Gemma Sanchez edit  doi
isbn  openurl
  Title Unsupervised and Notation-Independent Wall Segmentation in Floor Plans Using a Combination of Statistical and Structural Strategies Type Book Chapter
  Year 2014 Publication Graphics Recognition. Current Trends and Challenges Abbreviated Journal  
  Volume 8746 Issue Pages 109-121  
  Keywords Graphics recognition; Floor plan analysis; Object segmentation  
  Abstract In this paper we present a wall segmentation approach in floor plans that is able to work independently to the graphical notation, does not need any pre-annotated data for learning, and is able to segment multiple-shaped walls such as beams and curved-walls. This method results from the combination of the wall segmentation approaches [3, 5] presented recently by the authors. Firstly, potential straight wall segments are extracted in an unsupervised way similar to [3], but restricting even more the wall candidates considered in the original approach. Then, based on [5], these segments are used to learn the texture pattern of walls and spot the lost instances. The presented combination of both methods has been tested on 4 available datasets with different notations and compared qualitatively and quantitatively to the state-of-the-art applied on these collections. Additionally, some qualitative results on floor plans directly downloaded from the Internet are reported in the paper. The overall performance of the method demonstrates either its adaptability to different wall notations and shapes, and to document qualities and resolutions.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-662-44853-3 Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.076; 600.077 Approved no  
  Call Number Admin @ si @ HVS2014 Serial 2535  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; David Fernandez; Alicia Fornes; Ernest Valveny; Gemma Sanchez; Josep Llados edit  doi
isbn  openurl
  Title Runlength Histogram Image Signature for Perceptual Retrieval of Architectural Floor Plans Type Book Chapter
  Year 2014 Publication Graphics Recognition. Current Trends and Challenges Abbreviated Journal  
  Volume 8746 Issue Pages 135-146  
  Keywords Graphics recognition; Graphics retrieval; Image classification  
  Abstract This paper proposes a runlength histogram signature as a perceptual descriptor of architectural plans in a retrieval scenario. The style of an architectural drawing is characterized by the perception of lines, shapes and texture. Such visual stimuli are the basis for defining semantic concepts as space properties, symmetry, density, etc. We propose runlength histograms extracted in vertical, horizontal and diagonal directions as a characterization of line and space properties in floorplans, so it can be roughly associated to a description of walls and room structure. A retrieval application illustrates the performance of the proposed approach, where given a plan as a query, similar ones are obtained from a database. A ground truth based on human observation has been constructed to validate the hypothesis. Additional retrieval results on sketched building’s facades are reported qualitatively in this paper. Its good description and its adaptability to two different sketch drawings despite its simplicity shows the interest of the proposed approach and opens a challenging research line in graphics recognition.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-662-44853-3 Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.045; 600.056; 600.061; 600.076; 600.077 Approved no  
  Call Number Admin @ si @ HFF2014 Serial 2536  
Permanent link to this record
 

 
Author Lluis Gomez; Dimosthenis Karatzas edit  openurl
  Title Scene Text Recognition: No Country for Old Men? Type Conference Article
  Year 2014 Publication 1st International Workshop on Robust Reading Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IWRR  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ GoK2014c Serial 2538  
Permanent link to this record
 

 
Author Thanh Ha Do; Salvatore Tabbone; Oriol Ramos Terrades edit  doi
isbn  openurl
  Title Spotting Symbol Using Sparsity over Learned Dictionary of Local Descriptors Type Conference Article
  Year 2014 Publication 11th IAPR International Workshop on Document Analysis and Systems Abbreviated Journal  
  Volume Issue Pages 156-160  
  Keywords  
  Abstract This paper proposes a new approach to spot symbols into graphical documents using sparse representations. More specifically, a dictionary is learned from a training database of local descriptors defined over the documents. Following their sparse representations, interest points sharing similar properties are used to define interest regions. Using an original adaptation of information retrieval techniques, a vector model for interest regions and for a query symbol is built based on its sparsity in a visual vocabulary where the visual words are columns in the learned dictionary. The matching process is performed comparing the similarity between vector models. Evaluation on SESYD datasets demonstrates that our method is promising.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4799-3243-6 Medium  
  Area Expedition Conference DAS  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ DTR2014 Serial 2543  
Permanent link to this record
 

 
Author Marçal Rusiñol; David Aldavert; Ricardo Toledo; Josep Llados edit  doi
openurl 
  Title Efficient segmentation-free keyword spotting in historical document collections Type Journal Article
  Year 2015 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 48 Issue 2 Pages 545–555  
  Keywords Historical documents; Keyword spotting; Segmentation-free; Dense SIFT features; Latent semantic analysis; Product quantization  
  Abstract In this paper we present an efficient segmentation-free word spotting method, applied in the context of historical document collections, that follows the query-by-example paradigm. We use a patch-based framework where local patches are described by a bag-of-visual-words model powered by SIFT descriptors. By projecting the patch descriptors to a topic space with the latent semantic analysis technique and compressing the descriptors with the product quantization method, we are able to efficiently index the document information both in terms of memory and time. The proposed method is evaluated using four different collections of historical documents achieving good performances on both handwritten and typewritten scenarios. The yielded performances outperform the recent state-of-the-art keyword spotting approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.076; 600.077; 600.061; 601.223; 602.006; 600.055 Approved no  
  Call Number Admin @ si @ RAT2015a Serial 2544  
Permanent link to this record
 

 
Author Marçal Rusiñol; J. Chazalon; Jean-Marc Ogier edit  doi
isbn  openurl
  Title Combining Focus Measure Operators to Predict OCR Accuracy in Mobile-Captured Document Images Type Conference Article
  Year 2014 Publication 11th IAPR International Workshop on Document Analysis and Systems Abbreviated Journal  
  Volume Issue Pages 181 - 185  
  Keywords  
  Abstract Mobile document image acquisition is a new trend raising serious issues in business document processing workflows. Such digitization procedure is unreliable, and integrates many distortions which must be detected as soon as possible, on the mobile, to avoid paying data transmission fees, and losing information due to the inability to re-capture later a document with temporary availability. In this context, out-of-focus blur is major issue: users have no direct control over it, and it seriously degrades OCR recognition. In this paper, we concentrate on the estimation of focus quality, to ensure a sufficient legibility of a document image for OCR processing. We propose two contributions to improve OCR accuracy prediction for mobile-captured document images. First, we present 24 focus measures, never tested on document images, which are fast to compute and require no training. Second, we show that a combination of those measures enables state-of-the art performance regarding the correlation with OCR accuracy. The resulting approach is fast, robust, and easy to implement in a mobile device. Experiments are performed on a public dataset, and precise details about image processing are given.  
  Address Tours; France; April 2014  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4799-3243-6 Medium  
  Area Expedition Conference DAS  
  Notes DAG; 601.223; 600.077 Approved no  
  Call Number Admin @ si @ RCO2014a Serial 2545  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: