toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Ernest Valveny; Enric Marti edit   pdf
doi  openurl
  Title Deformable Template Matching within a Bayesian Framework for Hand-Written Graphic Symbol Recognition Type Journal Article
  Year 2000 Publication Graphics Recognition Recent Advances Abbreviated Journal  
  Volume 1941 Issue Pages 193-208  
  Keywords  
  Abstract We describe a method for hand-drawn symbol recognition based on deformable template matching able to handle uncertainty and imprecision inherent to hand-drawing. Symbols are represented as a set of straight lines and their deformations as geometric transformations of these lines. Matching, however, is done over the original binary image to avoid loss of information during line detection. It is defined as an energy minimization problem, using a Bayesian framework which allows to combine fidelity to ideal shape of the symbol and flexibility to modify the symbol in order to get the best fit to the binary input image. Prior to matching, we find the best global transformation of the symbol to start the recognition process, based on the distance between symbol lines and image lines. We have applied this method to the recognition of dimensions and symbols in architectural floor plans and we show its flexibility to recognize distorted symbols.  
  Address  
  Corporate Author Springer Verlag Thesis  
  Publisher Springer Verlag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) DAG;IAM; Approved no  
  Call Number IAM @ iam @ MVA2000 Serial 1655  
Permanent link to this record
 

 
Author Ernest Valveny; Enric Marti edit   pdf
doi  isbn
openurl 
  Title Hand-drawn symbol recognition in graphic documents using deformable template matching and a Bayesian framework Type Conference Article
  Year 2000 Publication Proc. 15th Int Pattern Recognition Conf Abbreviated Journal  
  Volume 2 Issue Pages 239-242  
  Keywords  
  Abstract Hand-drawn symbols can take many different and distorted shapes from their ideal representation. Then, very flexible methods are needed to be able to handle unconstrained drawings. We propose here to extend our previous work in hand-drawn symbol recognition based on a Bayesian framework and deformable template matching. This approach gets flexibility enough to fit distorted shapes in the drawing while keeping fidelity to the ideal shape of the symbol. In this work, we define the similarity measure between an image and a symbol based on the distance from every pixel in the image to the lines in the symbol. Matching is carried out using an implementation of the EM algorithm. Thus, we can improve recognition rates and computation time with respect to our previous formulation based on a simulated annealing algorithm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0-7695-0750-6 Medium  
  Area Expedition Conference  
  Notes (up) DAG;IAM; Approved no  
  Call Number IAM @ iam @ VAM2000 Serial 1656  
Permanent link to this record
 

 
Author Ernest Valveny; Enric Marti edit   pdf
url  doi
openurl 
  Title Application of deformable template matching to symbol recognition in hand-written architectural draw Type Conference Article
  Year 1999 Publication Proceedings of the Fifth International Conference on Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract We propose to use deformable template matching as a new approach to recognize characters and lineal symbols in hand-written line drawings, instead of traditional methods based on vectorization and feature extraction. Bayesian formulation of the deformable template matching allows combining fidelity to the ideal shape of the symbol with maximum flexibility to get the best fit to the input image. Lineal nature of symbols can be exploited to define a suitable representation of models and the set of deformations to be applied to them. Matching, however, is done over the original binary image to avoid losing relevant features during vectorization. We have applied this method to hand-written architectural drawings and experimental results demonstrate that symbols with high distortions from ideal shape can be accurately identified.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bangalore (India) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) DAG;IAM; Approved no  
  Call Number IAM @ iam @ VAM1999a Serial 1657  
Permanent link to this record
 

 
Author Ernest Valveny; Enric Marti edit  openurl
  Title Recognition of lineal symbols in hand-written drawings using deformable template matching Type Conference Article
  Year 1999 Publication Proceedings of the VIII Symposium Nacional de Reconocimiento de Formas y Análisis de Imágenes Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) DAG;IAM; Approved no  
  Call Number IAM @ iam @ VAM1999 Serial 1658  
Permanent link to this record
 

 
Author Ernest Valveny; Enric Marti edit  openurl
  Title Dimensions analysis in hand-drawn architectural drawings Type Conference Article
  Year 1997 Publication (SNRFAI’97) 7th Spanish National Symposium on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume Issue Pages 90-91  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication CVC-UAB Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) DAG;IAM; Approved no  
  Call Number IAM @ iam @ VAM1997 Serial 1659  
Permanent link to this record
 

 
Author Josep Llados; Enric Marti; Juan J.Villanueva edit  doi
openurl 
  Title Symbol recognition by error-tolerant subgraph matching between region adjacency graphs Type Journal Article
  Year 2001 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal  
  Volume 23 Issue 10 Pages 1137-1143  
  Keywords  
  Abstract The recognition of symbols in graphic documents is an intensive research activity in the community of pattern recognition and document analysis. A key issue in the interpretation of maps, engineering drawings, diagrams, etc. is the recognition of domain dependent symbols according to a symbol database. In this work we first review the most outstanding symbol recognition methods from two different points of view: application domains and pattern recognition methods. In the second part of the paper, open and unaddressed problems involved in symbol recognition are described, analyzing their current state of art and discussing future research challenges. Thus, issues such as symbol representation, matching, segmentation, learning, scalability of recognition methods and performance evaluation are addressed in this work. Finally, we discuss the perspectives of symbol recognition concerning to new paradigms such as user interfaces in handheld computers or document database and WWW indexing by graphical content.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) DAG;IAM;ISE; Approved no  
  Call Number IAM @ iam @ LMV2001 Serial 1581  
Permanent link to this record
 

 
Author Ernest Valveny; Ricardo Toledo; Ramon Baldrich; Enric Marti edit  openurl
  Title Combining recognition-based in segmentation-based approaches for graphic symol recognition using deformable template matching Type Conference Article
  Year 2002 Publication Proceeding of the Second IASTED International Conference Visualization, Imaging and Image Proceesing VIIP 2002 Abbreviated Journal  
  Volume Issue Pages 502–507  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) DAG;RV;CAT;IAM;CIC;ADAS Approved no  
  Call Number IAM @ iam @ VTB2002 Serial 1660  
Permanent link to this record
 

 
Author Sergio Escalera; Alicia Fornes; O. Pujol; Petia Radeva; Gemma Sanchez; Josep Llados edit  doi
openurl 
  Title Blurred Shape Model for Binary and Grey-level Symbol Recognition Type Journal Article
  Year 2009 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 30 Issue 15 Pages 1424–1433  
  Keywords  
  Abstract Many symbol recognition problems require the use of robust descriptors in order to obtain rich information of the data. However, the research of a good descriptor is still an open issue due to the high variability of symbols appearance. Rotation, partial occlusions, elastic deformations, intra-class and inter-class variations, or high variability among symbols due to different writing styles, are just a few problems. In this paper, we introduce a symbol shape description to deal with the changes in appearance that these types of symbols suffer. The shape of the symbol is aligned based on principal components to make the recognition invariant to rotation and reflection. Then, we present the Blurred Shape Model descriptor (BSM), where new features encode the probability of appearance of each pixel that outlines the symbols shape. Moreover, we include the new descriptor in a system to deal with multi-class symbol categorization problems. Adaboost is used to train the binary classifiers, learning the BSM features that better split symbol classes. Then, the binary problems are embedded in an Error-Correcting Output Codes framework (ECOC) to deal with the multi-class case. The methodology is evaluated on different synthetic and real data sets. State-of-the-art descriptors and classifiers are compared, showing the robustness and better performance of the present scheme to classify symbols with high variability of appearance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) HuPBA; DAG; MILAB Approved no  
  Call Number BCNPCL @ bcnpcl @ EFP2009a Serial 1180  
Permanent link to this record
 

 
Author Carles Sanchez; Oriol Ramos Terrades; Patricia Marquez; Enric Marti; Jaume Rocarias; Debora Gil edit   pdf
openurl 
  Title Evaluación automática de prácticas en Moodle para el aprendizaje autónomo en Ingenierías Type Miscellaneous
  Year 2014 Publication 8th International Congress on University Teaching and Innovation Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Tarragona; juliol 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CIDUI  
  Notes (up) IAM; 600.075;DAG Approved no  
  Call Number Admin @ si @ SRM2014 Serial 2458  
Permanent link to this record
 

 
Author Debora Gil; Oriol Ramos Terrades; Elisa Minchole; Carles Sanchez; Noelia Cubero de Frutos; Marta Diez-Ferrer; Rosa Maria Ortiz; Antoni Rosell edit   pdf
url  openurl
  Title Classification of Confocal Endomicroscopy Patterns for Diagnosis of Lung Cancer Type Conference Article
  Year 2017 Publication 6th Workshop on Clinical Image-based Procedures: Translational Research in Medical Imaging Abbreviated Journal  
  Volume 10550 Issue Pages 151-159  
  Keywords  
  Abstract Confocal Laser Endomicroscopy (CLE) is an emerging imaging technique that allows the in-vivo acquisition of cell patterns of potentially malignant lesions. Such patterns could discriminate between inflammatory and neoplastic lesions and, thus, serve as a first in-vivo biopsy to discard cases that do not actually require a cell biopsy.

The goal of this work is to explore whether CLE images obtained during videobronchoscopy contain enough visual information to discriminate between benign and malign peripheral lesions for lung cancer diagnosis. To do so, we have performed a pilot comparative study with 12 patients (6 adenocarcinoma and 6 benign-inflammatory) using 2 different methods for CLE pattern analysis: visual analysis by 3 experts and a novel methodology that uses graph methods to find patterns in pre-trained feature spaces. Our preliminary results indicate that although visual analysis can only achieve a 60.2% of accuracy, the accuracy of the proposed unsupervised image pattern classification raises to 84.6%.

We conclude that CLE images visual information allow in-vivo detection of neoplastic lesions and graph structural analysis applied to deep-learning feature spaces can achieve competitive results.
 
  Address Quebec; Canada; September 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CLIP  
  Notes (up) IAM; 600.096; 600.075; 600.145;DAG Approved no  
  Call Number Admin @ si @ GRM2017 Serial 2957  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: