|
Records |
Links |
|
Author |
P. Wang; V. Eglin; C. Garcia; C. Largeron; Josep Llados; Alicia Fornes |


|
|
Title |
A Coarse-to-Fine Word Spotting Approach for Historical Handwritten Documents Based on Graph Embedding and Graph Edit Distance |
Type |
Conference Article |
|
Year |
2014 |
Publication |
22nd International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
3074 - 3079 |
|
|
Keywords |
word spotting; coarse-to-fine mechamism; graphbased representation; graph embedding; graph edit distance |
|
|
Abstract |
Effective information retrieval on handwritten document images has always been a challenging task, especially historical ones. In the paper, we propose a coarse-to-fine handwritten word spotting approach based on graph representation. The presented model comprises both the topological and morphological signatures of the handwriting. Skeleton-based graphs with the Shape Context labelled vertexes are established for connected components. Each word image is represented as a sequence of graphs. Aiming at developing a practical and efficient word spotting approach for large-scale historical handwritten documents, a fast and coarse comparison is first applied to prune the regions that are not similar to the query based on the graph embedding methodology. Afterwards, the query and regions of interest are compared by graph edit distance based on the Dynamic Time Warping alignment. The proposed approach is evaluated on a public dataset containing 50 pages of historical marriage license records. The results show that the proposed approach achieves a compromise between efficiency and accuracy. |
|
|
Address |
Stockholm; Sweden; August 2014 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1051-4651 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes  |
DAG; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ WEG2014a |
Serial |
2515 |
|
Permanent link to this record |
|
|
|
|
Author |
Alicia Fornes; Josep Llados; Joan Mas; Joana Maria Pujadas-Mora; Anna Cabre |


|
|
Title |
A Bimodal Crowdsourcing Platform for Demographic Historical Manuscripts |
Type |
Conference Article |
|
Year |
2014 |
Publication |
Digital Access to Textual Cultural Heritage Conference |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
103-108 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we present a crowdsourcing web-based application for extracting information from demographic handwritten document images. The proposed application integrates two points of view: the semantic information for demographic research, and the ground-truthing for document analysis research. Concretely, the application has the contents view, where the information is recorded into forms, and the labeling view, with the word labels for evaluating document analysis techniques. The crowdsourcing architecture allows to accelerate the information extraction (many users can work simultaneously), validate the information, and easily provide feedback to the users. We finally show how the proposed application can be extended to other kind of demographic historical manuscripts. |
|
|
Address |
Madrid; May 2014 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-1-4503-2588-2 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DATeCH |
|
|
Notes  |
DAG; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ FLM2014 |
Serial |
2516 |
|
Permanent link to this record |
|
|
|
|
Author |
P. Wang; V. Eglin; C. Garcia; C. Largeron; Josep Llados; Alicia Fornes |


|
|
Title |
A Novel Learning-free Word Spotting Approach Based on Graph Representation |
Type |
Conference Article |
|
Year |
2014 |
Publication |
11th IAPR International Workshop on Document Analysis and Systems |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
207-211 |
|
|
Keywords |
|
|
|
Abstract |
Effective information retrieval on handwritten document images has always been a challenging task. In this paper, we propose a novel handwritten word spotting approach based on graph representation. The presented model comprises both topological and morphological signatures of handwriting. Skeleton-based graphs with the Shape Context labelled vertexes are established for connected components. Each word image is represented as a sequence of graphs. In order to be robust to the handwriting variations, an exhaustive merging process based on DTW alignment result is introduced in the similarity measure between word images. With respect to the computation complexity, an approximate graph edit distance approach using bipartite matching is employed for graph matching. The experiments on the George Washington dataset and the marriage records from the Barcelona Cathedral dataset demonstrate that the proposed approach outperforms the state-of-the-art structural methods. |
|
|
Address |
Tours; France; April 2014 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-1-4799-3243-6 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DAS |
|
|
Notes  |
DAG; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ WEG2014b |
Serial |
2517 |
|
Permanent link to this record |
|
|
|
|
Author |
P. Wang; V. Eglin; C. Garcia; C. Largeron; Josep Llados; Alicia Fornes |

|
|
Title |
Représentation par graphe de mots manuscrits dans les images pour la recherche par similarité |
Type |
Conference Article |
|
Year |
2014 |
Publication |
Colloque International Francophone sur l'Écrit et le Document |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
233-248 |
|
|
Keywords |
word spotting; graph-based representation; shape context description; graph edit distance; DTW; block merging; query by example |
|
|
Abstract |
Effective information retrieval on handwritten document images has always been
a challenging task. In this paper, we propose a novel handwritten word spotting approach based on graph representation. The presented model comprises both topological and morphological signatures of handwriting. Skeleton-based graphs with the Shape Context labeled vertexes are established for connected components. Each word image is represented as a sequence of graphs. In order to be robust to the handwriting variations, an exhaustive merging process based on DTW alignment results introduced in the similarity measure between word images. With respect to the computation complexity, an approximate graph edit distance approach using bipartite matching is employed for graph matching. The experiments on the George Washington dataset and the marriage records from the Barcelona Cathedral dataset demonstrate that the proposed approach outperforms the state-of-the-art structural methods. |
|
|
Address |
Nancy; Francia; March 2014 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CIFED |
|
|
Notes  |
DAG; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ WEG2014c |
Serial |
2564 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Josep Llados; Alicia Fornes; Anjan Dutta |



|
|
Title |
Large-scale Graph Indexing using Binary Embeddings of Node Contexts |
Type |
Conference Article |
|
Year |
2015 |
Publication |
10th IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
9069 |
Issue |
|
Pages |
208-217 |
|
|
Keywords |
Graph matching; Graph indexing; Application in document analysis; Word spotting; Binary embedding |
|
|
Abstract |
Graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their representational power in front of classical appearance-based representations in terms of feature vectors. Retrieving a query graph from a large dataset of graphs has the drawback of the high computational complexity required to compare the query and the target graphs. The most important property for a large-scale retrieval is the search time complexity to be sub-linear in the number of database examples. In this paper we propose a fast indexation formalism for graph retrieval. A binary embedding is defined as hashing keys for graph nodes. Given a database of labeled graphs, graph nodes are complemented with vectors of attributes representing their local context. Hence, each attribute counts the length of a walk of order k originated in a vertex with label l. Each attribute vector is converted to a binary code applying a binary-valued hash function. Therefore, graph retrieval is formulated in terms of finding target graphs in the database whose nodes have a small Hamming distance from the query nodes, easily computed with bitwise logical operators. As an application example, we validate the performance of the proposed methods in a handwritten word spotting scenario in images of historical documents. |
|
|
Address |
Beijing; China; May 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer International Publishing |
Place of Publication |
|
Editor |
C.-L.Liu; B.Luo; W.G.Kropatsch; J.Cheng |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-319-18223-0 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GbRPR |
|
|
Notes  |
DAG; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RLF2015a |
Serial |
2618 |
|
Permanent link to this record |
|
|
|
|
Author |
Nuria Cirera; Alicia Fornes; Josep Llados |


|
|
Title |
Hidden Markov model topology optimization for handwriting recognition |
Type |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
626-630 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we present a method to optimize the topology of linear left-to-right hidden Markov models. These models are very popular for sequential signals modeling on tasks such as handwriting recognition. Many topology definition methods select the number of states for a character model based
on character length. This can be a drawback when characters are shorter than the minimum allowed by the model, since they can not be properly trained nor recognized. The proposed method optimizes the number of states per model by automatically including convenient skip-state transitions and therefore it avoids the aforementioned problem.We discuss and compare our method with other character length-based methods such the Fixed, Bakis and Quantile methods. Our proposal performs well on off-line handwriting recognition task. |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes  |
DAG; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ CFL2015 |
Serial |
2639 |
|
Permanent link to this record |
|
|
|
|
Author |
Juan Ignacio Toledo; Jordi Cucurull; Jordi Puiggali; Alicia Fornes; Josep Llados |


|
|
Title |
Document Analysis Techniques for Automatic Electoral Document Processing: A Survey |
Type |
Conference Article |
|
Year |
2015 |
Publication |
E-Voting and Identity, Proceedings of 5th international conference, VoteID 2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
139-141 |
|
|
Keywords |
Document image analysis; Computer vision; Paper ballots; Paper based elections; Optical scan; Tally |
|
|
Abstract |
In this paper, we will discuss the most common challenges in electoral document processing and study the different solutions from the document analysis community that can be applied in each case. We will cover Optical Mark Recognition techniques to detect voter selections in the Australian Ballot, handwritten number recognition for preferential elections and handwriting recognition for write-in areas. We will also propose some particular adjustments that can be made to those general techniques in the specific context of electoral documents. |
|
|
Address |
Bern; Switzerland; September 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
VoteID |
|
|
Notes  |
DAG; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TCP2015 |
Serial |
2641 |
|
Permanent link to this record |
|
|
|
|
Author |
Josep Llados; Marçal Rusiñol |


|
|
Title |
Graphics Recognition Techniques |
Type |
Book Chapter |
|
Year |
2014 |
Publication |
Handbook of Document Image Processing and Recognition |
Abbreviated Journal |
|
|
|
Volume |
D |
Issue |
|
Pages |
489-521 |
|
|
Keywords |
Dimension recognition; Graphics recognition; Graphic-rich documents; Polygonal approximation; Raster-to-vector conversion; Texture-based primitive extraction; Text-graphics separation |
|
|
Abstract |
This chapter describes the most relevant approaches for the analysis of graphical documents. The graphics recognition pipeline can be splitted into three tasks. The low level or lexical task extracts the basic units composing the document. The syntactic level is focused on the structure, i.e., how graphical entities are constructed, and involves the location and classification of the symbols present in the document. The third level is a functional or semantic level, i.e., it models what the graphical symbols do and what they mean in the context where they appear. This chapter covers the lexical level, while the next two chapters are devoted to the syntactic and semantic level, respectively. The main problems reviewed in this chapter are raster-to-vector conversion (vectorization algorithms) and the separation of text and graphics components. The research and industrial communities have provided standard methods achieving reasonable performance levels. Hence, graphics recognition techniques can be considered to be in a mature state from a scientific point of view. Additionally this chapter provides insights on some related problems, namely, the extraction and recognition of dimensions in engineering drawings, and the recognition of hatched and tiled patterns. Both problems are usually associated, even integrated, in the vectorization process. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer London |
Place of Publication |
|
Editor |
D. Doermann; K. Tombre |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-0-85729-858-4 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
DAG; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ LlR2014 |
Serial |
2380 |
|
Permanent link to this record |
|
|
|
|
Author |
Salvatore Tabbone; Oriol Ramos Terrades |


|
|
Title |
An Overview of Symbol Recognition |
Type |
Book Chapter |
|
Year |
2014 |
Publication |
Handbook of Document Image Processing and Recognition |
Abbreviated Journal |
|
|
|
Volume |
D |
Issue |
|
Pages |
523-551 |
|
|
Keywords |
Pattern recognition; Shape descriptors; Structural descriptors; Symbolrecognition; Symbol spotting |
|
|
Abstract |
According to the Cambridge Dictionaries Online, a symbol is a sign, shape, or object that is used to represent something else. Symbol recognition is a subfield of general pattern recognition problems that focuses on identifying, detecting, and recognizing symbols in technical drawings, maps, or miscellaneous documents such as logos and musical scores. This chapter aims at providing the reader an overview of the different existing ways of describing and recognizing symbols and how the field has evolved to attain a certain degree of maturity. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer London |
Place of Publication |
|
Editor |
D. Doermann; K. Tombre |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-0-85729-858-4 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
DAG; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TaT2014 |
Serial |
2489 |
|
Permanent link to this record |
|
|
|
|
Author |
Palaiahnakote Shivakumara; Anjan Dutta; Chew Lim Tan; Umapada Pal |

|
|
Title |
Multi-oriented scene text detection in video based on wavelet and angle projection boundary growing |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Multimedia Tools and Applications |
Abbreviated Journal |
MTAP |
|
|
Volume |
72 |
Issue |
1 |
Pages |
515-539 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we address two complex issues: 1) Text frame classification and 2) Multi-oriented text detection in video text frame. We first divide a video frame into 16 blocks and propose a combination of wavelet and median-moments with k-means clustering at the block level to identify probable text blocks. For each probable text block, the method applies the same combination of feature with k-means clustering over a sliding window running through the blocks to identify potential text candidates. We introduce a new idea of symmetry on text candidates in each block based on the observation that pixel distribution in text exhibits a symmetric pattern. The method integrates all blocks containing text candidates in the frame and then all text candidates are mapped on to a Sobel edge map of the original frame to obtain text representatives. To tackle the multi-orientation problem, we present a new method called Angle Projection Boundary Growing (APBG) which is an iterative algorithm and works based on a nearest neighbor concept. APBG is then applied on the text representatives to fix the bounding box for multi-oriented text lines in the video frame. Directional information is used to eliminate false positives. Experimental results on a variety of datasets such as non-horizontal, horizontal, publicly available data (Hua’s data) and ICDAR-03 competition data (camera images) show that the proposed method outperforms existing methods proposed for video and the state of the art methods for scene text as well. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer US |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1380-7501 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
DAG; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SDT2014 |
Serial |
2357 |
|
Permanent link to this record |