|
Records |
Links |
|
Author |
Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate; Marçal Rusiñol; Francesc J. Ferri |
|
|
Title |
Fast Kernel Generalized Discriminative Common Vectors for Feature Extraction |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Journal of Mathematical Imaging and Vision |
Abbreviated Journal |
JMIV |
|
|
Volume |
60 |
Issue |
4 |
Pages |
512-524 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a supervised subspace learning method called Kernel Generalized Discriminative Common Vectors (KGDCV), as a novel extension of the known Discriminative Common Vectors method with Kernels. Our method combines the advantages of kernel methods to model complex data and solve nonlinear
problems with moderate computational complexity, with the better generalization properties of generalized approaches for large dimensional data. These attractive combination makes KGDCV specially suited for feature extraction and classification in computer vision, image processing and pattern recognition applications. Two different approaches to this generalization are proposed, a first one based on the kernel trick (KT) and a second one based on the nonlinear projection trick (NPT) for even higher efficiency. Both methodologies
have been validated on four different image datasets containing faces, objects and handwritten digits, and compared against well known non-linear state-of-art methods. Results show better discriminant properties than other generalized approaches both linear or kernel. In addition, the KGDCV-NPT approach presents a considerable computational gain, without compromising the accuracy of the model. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; ADAS; 600.086; 600.130; 600.121; 600.118; 600.129;IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ DMH2018a |
Serial |
3062 |
|
Permanent link to this record |
|
|
|
|
Author |
Dimosthenis Karatzas; Lluis Gomez; Marçal Rusiñol |
|
|
Title |
The Robust Reading Competition Annotation and Evaluation Platform |
Type |
Conference Article |
|
Year |
2017 |
Publication |
1st International Workshop on Open Services and Tools for Document Analysis |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
The ICDAR Robust Reading Competition (RRC), initiated in 2003 and re-established in 2011, has become the defacto evaluation standard for the international community. Concurrent with its second incarnation in 2011, a continuous effort started to develop an online framework to facilitate the hosting and management of competitions. This short paper briefly outlines the Robust Reading Competition Annotation and Evaluation Platform, the backbone of the Robust Reading Competition, comprising a collection of tools and processes that aim to simplify the management and annotation
of data, and to provide online and offline performance evaluation and analysis services |
|
|
Address |
Kyoto; Japan; November 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR-OST |
|
|
Notes |
DAG; 600.084; 600.121; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ KGR2017 |
Serial |
3063 |
|
Permanent link to this record |
|
|
|
|
Author |
David Aldavert |
|
|
Title |
Efficient and Scalable Handwritten Word Spotting on Historical Documents using Bag of Visual Words |
Type |
Book Whole |
|
Year |
2021 |
Publication |
PhD Thesis, Universitat Autonoma de Barcelona-CVC |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Word spotting can be defined as the pattern recognition tasked aimed at locating and retrieving a specific keyword within a document image collection without explicitly transcribing the whole corpus. Its use is particularly interesting when applied in scenarios where Optical Character Recognition performs poorly or can not be used at all. This thesis focuses on such a scenario, word spotting on historical handwritten documents that have been written by a single author or by multiple authors with a similar calligraphy.
This problem requires a visual signature that is robust to image artifacts, flexible to accommodate script variations and efficient to retrieve information in a rapid manner. For this, we have developed a set of word spotting methods that on their foundation use the well known Bag-of-Visual-Words (BoVW) representation. This representation has gained popularity among the document image analysis community to characterize handwritten words
in an unsupervised manner. However, most approaches on this field rely on a basic BoVW configuration and disregard complex encoding and spatial representations. We determine which BoVW configurations provide the best performance boost to a spotting system.
Then, we extend the segmentation-based word spotting, where word candidates are given a priori, to segmentation-free spotting. The proposed approach seeds the document images with overlapping word location candidates and characterizes them with a BoVW signature. Retrieval is achieved comparing the query and candidate signatures and returning the locations that provide a higher consensus. This is a simple but powerful approach that requires a more compact signature than in a segmentation-based scenario. We first
project the BoVW signature into a reduced semantic topics space and then compress it further using Product Quantizers. The resulting signature only requires a few dozen bytes, allowing us to index thousands of pages on a common desktop computer. The final system still yields a performance comparable to the state-of-the-art despite all the information loss during the compression phases.
Afterwards, we also study how to combine different modalities of information in order to create a query-by-X spotting system where, words are indexed using an information modality and queries are retrieved using another. We consider three different information modalities: visual, textual and audio. Our proposal is to create a latent feature space where features which are semantically related are projected onto the same topics. Creating thus a new feature space where information from different modalities can be compared. Later, we consider the codebook generation and descriptor encoding problem. The codebooks used to encode the BoVW signatures are usually created using an unsupervised clustering algorithm and, they require to test multiple parameters to determine which configuration is best for a certain document collection. We propose a semantic clustering algorithm which allows to estimate the best parameter from data. Since gather annotated data is costly, we use synthetically generated word images. The resulting codebook is database agnostic, i. e. a codebook that yields a good performance on document collections that use the same script. We also propose the use of an additional codebook to approximate descriptors and reduce the descriptor encoding
complexity to sub-linear.
Finally, we focus on the problem of signatures dimensionality. We propose a new symbol probability signature where each bin represents the probability that a certain symbol is present a certain location of the word image. This signature is extremely compact and combined with compression techniques can represent word images with just a few bytes per signature. |
|
|
Address |
April 2021 |
|
|
Corporate Author |
|
Thesis |
Ph.D. thesis |
|
|
Publisher |
Ediciones Graficas Rey |
Place of Publication |
|
Editor |
Marçal Rusiñol;Josep Llados |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-84-122714-5-4 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ Ald2021 |
Serial |
3601 |
|
Permanent link to this record |
|
|
|
|
Author |
Raul Gomez; Baoguang Shi; Lluis Gomez; Lukas Numann; Andreas Veit; Jiri Matas; Serge Belongie; Dimosthenis Karatzas |
|
|
Title |
ICDAR2017 Robust Reading Challenge on COCO-Text |
Type |
Conference Article |
|
Year |
2017 |
Publication |
14th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Kyoto; Japan; November 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GSG2017 |
Serial |
3076 |
|
Permanent link to this record |
|
|
|
|
Author |
Masakazu Iwamura; Naoyuki Morimoto; Keishi Tainaka; Dena Bazazian; Lluis Gomez; Dimosthenis Karatzas |
|
|
Title |
ICDAR2017 Robust Reading Challenge on Omnidirectional Video |
Type |
Conference Article |
|
Year |
2017 |
Publication |
14th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Results of ICDAR 2017 Robust Reading Challenge on Omnidirectional Video are presented. This competition uses Downtown Osaka Scene Text (DOST) Dataset that was captured in Osaka, Japan with an omnidirectional camera. Hence, it consists of sequential images (videos) of different view angles. Regarding the sequential images as videos (video mode), two tasks of localisation and end-to-end recognition are prepared. Regarding them as a set of still images (still image mode), three tasks of localisation, cropped word recognition and end-to-end recognition are prepared. As the dataset has been captured in Japan, the dataset contains Japanese text but also include text consisting of alphanumeric characters (Latin text). Hence, a submitted result for each task is evaluated in three ways: using Japanese only ground truth (GT), using Latin only GT and using combined GTs of both. Finally, by the submission deadline, we have received two submissions in the text localisation task of the still image mode. We intend to continue the competition in the open mode. Expecting further submissions, in this report we provide baseline results in all the tasks in addition to the submissions from the community. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.084; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ IMT2017 |
Serial |
3077 |
|
Permanent link to this record |
|
|
|
|
Author |
Suman Ghosh; Ernest Valveny |
|
|
Title |
R-PHOC: Segmentation-Free Word Spotting using CNN |
Type |
Conference Article |
|
Year |
2017 |
Publication |
14th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Convolutional neural network; Image segmentation; Artificial neural network; Nearest neighbor search |
|
|
Abstract |
arXiv:1707.01294
This paper proposes a region based convolutional neural network for segmentation-free word spotting. Our network takes as input an image and a set of word candidate bound- ing boxes and embeds all bounding boxes into an embedding space, where word spotting can be casted as a simple nearest neighbour search between the query representation and each of the candidate bounding boxes. We make use of PHOC embedding as it has previously achieved significant success in segmentation- based word spotting. Word candidates are generated using a simple procedure based on grouping connected components using some spatial constraints. Experiments show that R-PHOC which operates on images directly can improve the current state-of- the-art in the standard GW dataset and performs as good as PHOCNET in some cases designed for segmentation based word spotting. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GhV2017a |
Serial |
3079 |
|
Permanent link to this record |
|
|
|
|
Author |
Suman Ghosh; Ernest Valveny |
|
|
Title |
Visual attention models for scene text recognition |
Type |
Conference Article |
|
Year |
2017 |
Publication |
14th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
arXiv:1706.01487
In this paper we propose an approach to lexicon-free recognition of text in scene images. Our approach relies on a LSTM-based soft visual attention model learned from convolutional features. A set of feature vectors are derived from an intermediate convolutional layer corresponding to different areas of the image. This permits encoding of spatial information into the image representation. In this way, the framework is able to learn how to selectively focus on different parts of the image. At every time step the recognizer emits one character using a weighted combination of the convolutional feature vectors according to the learned attention model. Training can be done end-to-end using only word level annotations. In addition, we show that modifying the beam search algorithm by integrating an explicit language model leads to significantly better recognition results. We validate the performance of our approach on standard SVT and ICDAR'03 scene text datasets, showing state-of-the-art performance in unconstrained text recognition. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GhV2017b |
Serial |
3080 |
|
Permanent link to this record |
|
|
|
|
Author |
Sounak Dey; Anjan Dutta; Juan Ignacio Toledo; Suman Ghosh; Josep Llados; Umapada Pal |
|
|
Title |
SigNet: Convolutional Siamese Network for Writer Independent Offline Signature Verification |
Type |
Miscellaneous |
|
Year |
2018 |
Publication |
Arxiv |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Offline signature verification is one of the most challenging tasks in biometrics and document forensics. Unlike other verification problems, it needs to model minute but critical details between genuine and forged signatures, because a skilled falsification might often resembles the real signature with small deformation. This verification task is even harder in writer independent scenarios which is undeniably fiscal for realistic cases. In this paper, we model an offline writer independent signature verification task with a convolutional Siamese network. Siamese networks are twin networks with shared weights, which can be trained to learn a feature space where similar observations are placed in proximity. This is achieved by exposing the network to a pair of similar and dissimilar observations and minimizing the Euclidean distance between similar pairs while simultaneously maximizing it between dissimilar pairs. Experiments conducted on cross-domain datasets emphasize the capability of our network to model forgery in different languages (scripts) and handwriting styles. Moreover, our designed Siamese network, named SigNet, exceeds the state-of-the-art results on most of the benchmark signature datasets, which paves the way for further research in this direction. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.097; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DDT2018 |
Serial |
3085 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Pere de las Heras; Oriol Ramos Terrades; Josep Llados |
|
|
Title |
Ontology-Based Understanding of Architectural Drawings |
Type |
Book Chapter |
|
Year |
2017 |
Publication |
International Workshop on Graphics Recognition. GREC 2015.Graphic Recognition. Current Trends and Challenges |
Abbreviated Journal |
|
|
|
Volume |
9657 |
Issue |
|
Pages |
75-85 |
|
|
Keywords |
Graphics recognition; Floor plan analysi; Domain ontology |
|
|
Abstract |
In this paper we present a knowledge base of architectural documents aiming at improving existing methods of floor plan classification and understanding. It consists of an ontological definition of the domain and the inclusion of real instances coming from both, automatically interpreted and manually labeled documents. The knowledge base has proven to be an effective tool to structure our knowledge and to easily maintain and upgrade it. Moreover, it is an appropriate means to automatically check the consistency of relational data and a convenient complement of hard-coded knowledge interpretation systems. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ HRL2017 |
Serial |
3086 |
|
Permanent link to this record |
|
|
|
|
Author |
Dena Bazazian; Dimosthenis Karatzas; Andrew Bagdanov |
|
|
Title |
Soft-PHOC Descriptor for End-to-End Word Spotting in Egocentric Scene Images |
Type |
Conference Article |
|
Year |
2018 |
Publication |
International Workshop on Egocentric Perception, Interaction and Computing at ECCV |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Word spotting in natural scene images has many applications in scene understanding and visual assistance. We propose Soft-PHOC, an intermediate representation of images based on character probability maps. Our representation extends the concept of the Pyramidal Histogram Of Characters (PHOC) by exploiting Fully Convolutional Networks to derive a pixel-wise mapping of the character distribution within candidate word regions. We show how to use our descriptors for word spotting tasks in egocentric camera streams through an efficient text line proposal algorithm. This is based on the Hough Transform over character attribute maps followed by scoring using Dynamic Time Warping (DTW). We evaluate our results on ICDAR 2015 Challenge 4 dataset of incidental scene text captured by an egocentric camera. |
|
|
Address |
Munich; Alemanya; September 2018 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ECCVW |
|
|
Notes |
DAG; 600.129; 600.121; |
Approved |
no |
|
|
Call Number |
Admin @ si @ BKB2018b |
Serial |
3174 |
|
Permanent link to this record |