toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Hongxing Gao; Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados edit   pdf
doi  openurl
  Title Fast Structural Matching for Document Image Retrieval through Spatial Databases Type Conference Article
  Year 2014 Publication Document Recognition and Retrieval XXI Abbreviated Journal  
  Volume 9021 Issue Pages  
  Keywords Document image retrieval; distance transform; MSER; spatial database  
  Abstract The structure of document images plays a signi cant role in document analysis thus considerable e orts have been made towards extracting and understanding document structure, usually in the form of layout analysis approaches. In this paper, we rst employ Distance Transform based MSER (DTMSER) to eciently extract stable document structural elements in terms of a dendrogram of key-regions. Then a fast structural matching method is proposed to query the structure of document (dendrogram) based on a spatial database which facilitates the formulation of advanced spatial queries. The experiments demonstrate a signi cant improvement in a document retrieval scenario when compared to the use of typical Bag of Words (BoW) and pyramidal BoW descriptors.  
  Address Amsterdam; September 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) ISBN Medium  
  Area Expedition Conference SPIE-DRR  
  Notes DAG; 600.056; 600.061; 600.077 Approved no  
  Call Number Admin @ si @ GRK2014a Serial 2496  
Permanent link to this record
 

 
Author Hongxing Gao; Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados edit   pdf
doi  openurl
  Title Embedding Document Structure to Bag-of-Words through Pair-wise Stable Key-regions Type Conference Article
  Year 2014 Publication 22nd International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2903 - 2908  
  Keywords  
  Abstract Since the document structure carries valuable discriminative information, plenty of efforts have been made for extracting and understanding document structure among which layout analysis approaches are the most commonly used. In this paper, Distance Transform based MSER (DTMSER) is employed to efficiently extract the document structure as a dendrogram of key-regions which roughly correspond to structural elements such as characters, words and paragraphs. Inspired by the Bag
of Words (BoW) framework, we propose an efficient method for structural document matching by representing the document image as a histogram of key-region pairs encoding structural relationships.
Applied to the scenario of document image retrieval, experimental results demonstrate a remarkable improvement when comparing the proposed method with typical BoW and pyramidal BoW methods.
 
  Address Stockholm; Sweden; August 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 600.056; 600.061; 600.077 Approved no  
  Call Number Admin @ si @ GRK2014b Serial 2497  
Permanent link to this record
 

 
Author Joan M. Nuñez; Jorge Bernal; Miquel Ferrer; Fernando Vilariño edit   pdf
doi  openurl
  Title Impact of Keypoint Detection on Graph-based Characterization of Blood Vessels in Colonoscopy Videos Type Conference Article
  Year 2014 Publication CARE workshop Abbreviated Journal  
  Volume Issue Pages  
  Keywords Colonoscopy; Graph Matching; Biometrics; Vessel; Intersection  
  Abstract We explore the potential of the use of blood vessels as anatomical landmarks for developing image registration methods in colonoscopy images. An unequivocal representation of blood vessels could be used to guide follow-up methods to track lesions over different interventions. We propose a graph-based representation to characterize network structures, such as blood vessels, based on the use of intersections and endpoints. We present a study consisting of the assessment of the minimal performance a keypoint detector should achieve so that the structure can still be recognized. Experimental results prove that, even by achieving a loss of 35% of the keypoints, the descriptive power of the associated graphs to the vessel pattern is still high enough to recognize blood vessels.  
  Address Boston; USA; September 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) ISBN Medium  
  Area Expedition Conference CARE  
  Notes MV; DAG; 600.060; 600.047; 600.077;SIAI Approved no  
  Call Number Admin @ si @ NBF2014 Serial 2504  
Permanent link to this record
 

 
Author C. Alejandro Parraga; Jordi Roca; Dimosthenis Karatzas; Sophie Wuerger edit   pdf
url  doi
openurl 
  Title Limitations of visual gamma corrections in LCD displays Type Journal Article
  Year 2014 Publication Displays Abbreviated Journal Dis  
  Volume 35 Issue 5 Pages 227–239  
  Keywords Display calibration; Psychophysics; Perceptual; Visual gamma correction; Luminance matching; Observer-based calibration  
  Abstract A method for estimating the non-linear gamma transfer function of liquid–crystal displays (LCDs) without the need of a photometric measurement device was described by Xiao et al. (2011) [1]. It relies on observer’s judgments of visual luminance by presenting eight half-tone patterns with luminances from 1/9 to 8/9 of the maximum value of each colour channel. These half-tone patterns were distributed over the screen both over the vertical and horizontal viewing axes. We conducted a series of photometric and psychophysical measurements (consisting in the simultaneous presentation of half-tone patterns in each trial) to evaluate whether the angular dependency of the light generated by three different LCD technologies would bias the results of these gamma transfer function estimations. Our results show that there are significant differences between the gamma transfer functions measured and produced by observers at different viewing angles. We suggest appropriate modifications to the Xiao et al. paradigm to counterbalance these artefacts which also have the advantage of shortening the amount of time spent in collecting the psychophysical measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) ISBN Medium  
  Area Expedition Conference  
  Notes CIC; DAG; 600.052; 600.077; 600.074 Approved no  
  Call Number Admin @ si @ PRK2014 Serial 2511  
Permanent link to this record
 

 
Author Alicia Fornes; Josep Llados; Joan Mas; Joana Maria Pujadas-Mora; Anna Cabre edit   pdf
doi  isbn
openurl 
  Title A Bimodal Crowdsourcing Platform for Demographic Historical Manuscripts Type Conference Article
  Year 2014 Publication Digital Access to Textual Cultural Heritage Conference Abbreviated Journal  
  Volume Issue Pages 103-108  
  Keywords  
  Abstract In this paper we present a crowdsourcing web-based application for extracting information from demographic handwritten document images. The proposed application integrates two points of view: the semantic information for demographic research, and the ground-truthing for document analysis research. Concretely, the application has the contents view, where the information is recorded into forms, and the labeling view, with the word labels for evaluating document analysis techniques. The crowdsourcing architecture allows to accelerate the information extraction (many users can work simultaneously), validate the information, and easily provide feedback to the users. We finally show how the proposed application can be extended to other kind of demographic historical manuscripts.  
  Address Madrid; May 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) ISBN 978-1-4503-2588-2 Medium  
  Area Expedition Conference DATeCH  
  Notes DAG; 600.061; 602.006; 600.077 Approved no  
  Call Number Admin @ si @ FLM2014 Serial 2516  
Permanent link to this record
 

 
Author P. Wang; V. Eglin; C. Garcia; C. Largeron; Josep Llados; Alicia Fornes edit   pdf
doi  isbn
openurl 
  Title A Novel Learning-free Word Spotting Approach Based on Graph Representation Type Conference Article
  Year 2014 Publication 11th IAPR International Workshop on Document Analysis and Systems Abbreviated Journal  
  Volume Issue Pages 207-211  
  Keywords  
  Abstract Effective information retrieval on handwritten document images has always been a challenging task. In this paper, we propose a novel handwritten word spotting approach based on graph representation. The presented model comprises both topological and morphological signatures of handwriting. Skeleton-based graphs with the Shape Context labelled vertexes are established for connected components. Each word image is represented as a sequence of graphs. In order to be robust to the handwriting variations, an exhaustive merging process based on DTW alignment result is introduced in the similarity measure between word images. With respect to the computation complexity, an approximate graph edit distance approach using bipartite matching is employed for graph matching. The experiments on the George Washington dataset and the marriage records from the Barcelona Cathedral dataset demonstrate that the proposed approach outperforms the state-of-the-art structural methods.  
  Address Tours; France; April 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) ISBN 978-1-4799-3243-6 Medium  
  Area Expedition Conference DAS  
  Notes DAG; 600.061; 602.006; 600.077 Approved no  
  Call Number Admin @ si @ WEG2014b Serial 2517  
Permanent link to this record
 

 
Author Francisco Alvaro; Francisco Cruz; Joan Andreu Sanchez; Oriol Ramos Terrades; Jose Miguel Benedi edit   pdf
doi  openurl
  Title Structure Detection and Segmentation of Documents Using 2D Stochastic Context-Free Grammars Type Journal Article
  Year 2015 Publication Neurocomputing Abbreviated Journal NEUCOM  
  Volume 150 Issue A Pages 147-154  
  Keywords document image analysis; stochastic context-free grammars; text classi cation features  
  Abstract In this paper we de ne a bidimensional extension of Stochastic Context-Free Grammars for structure detection and segmentation of images of documents.
Two sets of text classi cation features are used to perform an initial classi cation of each zone of the page. Then, the document segmentation is obtained as the most likely hypothesis according to a stochastic grammar. We used a dataset of historical marriage license books to validate this approach. We also tested several inference algorithms for Probabilistic Graphical Models
and the results showed that the proposed grammatical model outperformed
the other methods. Furthermore, grammars also provide the document structure
along with its segmentation.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 601.158; 600.077; 600.061 Approved no  
  Call Number Admin @ si @ ACS2015 Serial 2531  
Permanent link to this record
 

 
Author Lluis Gomez; Dimosthenis Karatzas edit  openurl
  Title Scene Text Recognition: No Country for Old Men? Type Conference Article
  Year 2014 Publication 1st International Workshop on Robust Reading Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) ISBN Medium  
  Area Expedition Conference IWRR  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ GoK2014c Serial 2538  
Permanent link to this record
 

 
Author Thanh Ha Do; Salvatore Tabbone; Oriol Ramos Terrades edit  doi
isbn  openurl
  Title Spotting Symbol Using Sparsity over Learned Dictionary of Local Descriptors Type Conference Article
  Year 2014 Publication 11th IAPR International Workshop on Document Analysis and Systems Abbreviated Journal  
  Volume Issue Pages 156-160  
  Keywords  
  Abstract This paper proposes a new approach to spot symbols into graphical documents using sparse representations. More specifically, a dictionary is learned from a training database of local descriptors defined over the documents. Following their sparse representations, interest points sharing similar properties are used to define interest regions. Using an original adaptation of information retrieval techniques, a vector model for interest regions and for a query symbol is built based on its sparsity in a visual vocabulary where the visual words are columns in the learned dictionary. The matching process is performed comparing the similarity between vector models. Evaluation on SESYD datasets demonstrates that our method is promising.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) ISBN 978-1-4799-3243-6 Medium  
  Area Expedition Conference DAS  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ DTR2014 Serial 2543  
Permanent link to this record
 

 
Author Marçal Rusiñol; David Aldavert; Ricardo Toledo; Josep Llados edit  doi
openurl 
  Title Efficient segmentation-free keyword spotting in historical document collections Type Journal Article
  Year 2015 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 48 Issue 2 Pages 545–555  
  Keywords Historical documents; Keyword spotting; Segmentation-free; Dense SIFT features; Latent semantic analysis; Product quantization  
  Abstract In this paper we present an efficient segmentation-free word spotting method, applied in the context of historical document collections, that follows the query-by-example paradigm. We use a patch-based framework where local patches are described by a bag-of-visual-words model powered by SIFT descriptors. By projecting the patch descriptors to a topic space with the latent semantic analysis technique and compressing the descriptors with the product quantization method, we are able to efficiently index the document information both in terms of memory and time. The proposed method is evaluated using four different collections of historical documents achieving good performances on both handwritten and typewritten scenarios. The yielded performances outperform the recent state-of-the-art keyword spotting approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) ISBN Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.076; 600.077; 600.061; 601.223; 602.006; 600.055 Approved no  
  Call Number Admin @ si @ RAT2015a Serial 2544  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: