|
Records |
Links |
|
Author |
Jaume Gibert; Ernest Valveny; Horst Bunke |


|
|
Title |
Dimensionality Reduction for Graph of Words Embedding |
Type |
Conference Article |
|
Year |
2011 |
Publication |
8th IAPR-TC-15 International Workshop. Graph-Based Representations in Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
6658 |
Issue |
|
Pages |
22-31 |
|
|
Keywords |
|
|
|
Abstract |
The Graph of Words Embedding consists in mapping every graph of a given dataset to a feature vector by counting unary and binary relations between node attributes of the graph. While it shows good properties in classification problems, it suffers from high dimensionality and sparsity. These two issues are addressed in this article. Two well-known techniques for dimensionality reduction, kernel principal component analysis (kPCA) and independent component analysis (ICA), are applied to the embedded graphs. We discuss their performance compared to the classification of the original vectors on three different public databases of graphs. |
|
|
Address |
Münster, Germany |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
Xiaoyi Jiang; Miquel Ferrer; Andrea Torsello |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN  |
978-3-642-20843-0 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GbRPR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ GVB2011a |
Serial |
1743 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Pere de las Heras; Gemma Sanchez |


|
|
Title |
And-Or Graph Grammar for Architectural Floorplan Representation, Learning and Recognition. A Semantic, Structural and Hierarchical Model |
Type |
Conference Article |
|
Year |
2011 |
Publication |
5th Iberian Conference on Pattern Recognition and Image Analysis |
Abbreviated Journal |
|
|
|
Volume |
6669 |
Issue |
|
Pages |
17-24 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a syntactic model for architectural floor plan interpretation. A stochastic image grammar over an And-Or graph is inferred to represent the hierarchical, structural and semantic relations between elements of all possible floor plans. This grammar is augmented with three different probabilistic models, learnt from a training set, to account the frequency of that relations. Then, a Bottom-Up/Top-Down parser with a pruning strategy has been used for floor plan recognition. For a given input, the parser generates the most probable parse graph for that document. This graph not only contains the structural and semantic relations of its elements, but also its hierarchical composition, that allows to interpret the floor plan at different levels of abstraction. |
|
|
Address |
Las Palmas de Gran Canaria. Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN  |
978-3-642-21256-7 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
IbPRIA |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ HeS2011 |
Serial |
1736 |
|
Permanent link to this record |
|
|
|
|
Author |
Anjan Dutta; Josep Llados; Umapada Pal |


|
|
Title |
A Bag-of-Paths Based Serialized Subgraph Matching for Symbol Spotting in Line Drawings |
Type |
Conference Article |
|
Year |
2011 |
Publication |
5th Iberian Conference on Pattern Recognition and Image Analysis |
Abbreviated Journal |
|
|
|
Volume |
6669 |
Issue |
|
Pages |
620-627 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we propose an error tolerant subgraph matching algorithm based on bag-of-paths for solving the problem of symbol spotting in line drawings. Bag-of-paths is a factorized representation of graphs where the factorization is done by considering all the acyclic paths between each pair of connected nodes. Similar paths within the whole collection of documents are clustered and organized in a lookup table for efficient indexing. The lookup table contains the index key of each cluster and the corresponding list of locations as a single entry. The mean path of each of the clusters serves as the index key for each table entry. The spotting method is then formulated by a spatial voting scheme to the list of locations of the paths that are decided in terms of search of similar paths that compose the query symbol. Efficient indexing of common substructures helps to reduce the computational burden of usual graph based methods. The proposed method can also be seen as a way to serialize graphs which allows to reduce the complexity of the subgraph isomorphism. We have encoded the paths in terms of both attributed strings and turning functions, and presented a comparative results between them within the symbol spotting framework. Experimentations for matching different shape silhouettes are also reported and the method has been proved to work in noisy environment also. |
|
|
Address |
Las Palmas de Gran Canaria. Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
Berlin |
Editor |
Jordi Vitria; Joao Miguel Raposo; Mario Hernandez |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN  |
978-3-642-21256-7 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
IbPRIA |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ DLP2011a |
Serial |
1738 |
|
Permanent link to this record |
|
|
|
|
Author |
David Fernandez; Josep Llados; Alicia Fornes |


|
|
Title |
Handwritten Word Spotting in Old Manuscript Images Using a Pseudo-Structural Descriptor Organized in a Hash Structure |
Type |
Conference Article |
|
Year |
2011 |
Publication |
5th Iberian Conference on Pattern Recognition and Image Analysis |
Abbreviated Journal |
|
|
|
Volume |
6669 |
Issue |
|
Pages |
628-635 |
|
|
Keywords |
|
|
|
Abstract |
There are lots of historical handwritten documents with information that can be used for several studies and projects. The Document Image Analysis and Recognition community is interested in preserving these documents and extracting all the valuable information from them. Handwritten word-spotting is the pattern classification task which consists in detecting handwriting word images. In this work, we have used a query-by-example formalism: we have matched an input image with one or multiple images from handwritten documents to determine the distance that might indicate a correspondence. We have developed an approach based in characteristic Loci Features stored in a hash structure. Document images of the marriage licences of the Cathedral of Barcelona are used as the benchmarking database. |
|
|
Address |
Las Palmas de Gran Canaria. Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
Jordi Vitria; Joao Miguel Raposo; Mario Hernandez |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN  |
978-3-642-21256-7 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
IbPRIA |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ FLF2011 |
Serial |
1742 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Gibert; Ernest Valveny; Horst Bunke |


|
|
Title |
Vocabulary Selection for Graph of Words Embedding |
Type |
Conference Article |
|
Year |
2011 |
Publication |
5th Iberian Conference on Pattern Recognition and Image Analysis |
Abbreviated Journal |
|
|
|
Volume |
6669 |
Issue |
|
Pages |
216-223 |
|
|
Keywords |
|
|
|
Abstract |
The Graph of Words Embedding consists in mapping every graph in a given dataset to a feature vector by counting unary and binary relations between node attributes of the graph. It has been shown to perform well for graphs with discrete label alphabets. In this paper we extend the methodology to graphs with n-dimensional continuous attributes by selecting node representatives. We propose three different discretization procedures for the attribute space and experimentally evaluate the dependence on both the selector and the number of node representatives. In the context of graph classification, the experimental results reveal that on two out of three public databases the proposed extension achieves superior performance over a standard reference system. |
|
|
Address |
Las Palmas de Gran Canaria. Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer |
Place of Publication |
Berlin |
Editor |
Vitria, Jordi; Sanches, João Miguel Raposo; Hernández, Mario |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN  |
978-3-642-21256-7 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
IbPRIA |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ GVB2011b |
Serial |
1744 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Gibert; Ernest Valveny; Oriol Ramos Terrades; Horst Bunke |


|
|
Title |
Multiple Classifiers for Graph of Words Embedding |
Type |
Conference Article |
|
Year |
2011 |
Publication |
10th International Conference on Multiple Classifier Systems |
Abbreviated Journal |
|
|
|
Volume |
6713 |
Issue |
|
Pages |
36-45 |
|
|
Keywords |
|
|
|
Abstract |
During the last years, there has been an increasing interest in applying the multiple classifier framework to the domain of structural pattern recognition. Constructing base classifiers when the input patterns are graph based representations is not an easy problem. In this work, we make use of the graph embedding methodology in order to construct different feature vector representations for graphs. The graph of words embedding assigns a feature vector to every graph by counting unary and binary relations between node representatives and combining these pieces of information into a single vector. Selecting different node representatives leads to different vectorial representations and therefore to different base classifiers that can be combined. We experimentally show how this methodology significantly improves the classification of graphs with respect to single base classifiers. |
|
|
Address |
Napoles, Italy |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
Carlo Sansone; Josef Kittler; Fabio Roli |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN  |
978-3-642-21556-8 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
MCS |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @GVR2011 |
Serial |
1745 |
|
Permanent link to this record |
|
|
|
|
Author |
Muhammad Muzzamil Luqman; Jean-Yves Ramel; Josep Llados |


|
|
Title |
Improving Fuzzy Multilevel Graph Embedding through Feature Selection Technique |
Type |
Conference Article |
|
Year |
2012 |
Publication |
Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshop |
Abbreviated Journal |
|
|
|
Volume |
7626 |
Issue |
|
Pages |
243-253 |
|
|
Keywords |
|
|
|
Abstract |
Graphs are the most powerful, expressive and convenient data structures but there is a lack of efficient computational tools and algorithms for processing them. The embedding of graphs into numeric vector spaces permits them to access the state-of-the-art computational efficient statistical models and tools. In this paper we take forward our work on explicit graph embedding and present an improvement to our earlier proposed method, named “fuzzy multilevel graph embedding – FMGE”, through feature selection technique. FMGE achieves the embedding of attributed graphs into low dimensional vector spaces by performing a multilevel analysis of graphs and extracting a set of global, structural and elementary level features. Feature selection permits FMGE to select the subset of most discriminating features and to discard the confusing ones for underlying graph dataset. Experimental results for graph classification experimentation on IAM letter, GREC and fingerprint graph databases, show improvement in the performance of FMGE. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN  |
978-3-642-34165-6 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
SSPR&SPR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ LRL2012 |
Serial |
2381 |
|
Permanent link to this record |
|
|
|
|
Author |
Volkmar Frinken; Alicia Fornes; Josep Llados; Jean-Marc Ogier |


|
|
Title |
Bidirectional Language Model for Handwriting Recognition |
Type |
Conference Article |
|
Year |
2012 |
Publication |
Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshop |
Abbreviated Journal |
|
|
|
Volume |
7626 |
Issue |
|
Pages |
611-619 |
|
|
Keywords |
|
|
|
Abstract |
In order to improve the results of automatically recognized handwritten text, information about the language is commonly included in the recognition process. A common approach is to represent a text line as a sequence. It is processed in one direction and the language information via n-grams is directly included in the decoding. This approach, however, only uses context on one side to estimate a word’s probability. Therefore, we propose a bidirectional recognition in this paper, using distinct forward and a backward language models. By combining decoding hypotheses from both directions, we achieve a significant increase in recognition accuracy for the off-line writer independent handwriting recognition task. Both language models are of the same type and can be estimated on the same corpus. Hence, the increase in recognition accuracy comes without any additional need for training data or language modeling complexity. |
|
|
Address |
Japan |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN  |
978-3-642-34165-6 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
SSPR&SPR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ FFL2012 |
Serial |
2057 |
|
Permanent link to this record |
|
|
|
|
Author |
Klaus Broelemann; Anjan Dutta; Xiaoyi Jiang; Josep Llados |


|
|
Title |
Hierarchical graph representation for symbol spotting in graphical document images |
Type |
Conference Article |
|
Year |
2012 |
Publication |
Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshop |
Abbreviated Journal |
|
|
|
Volume |
7626 |
Issue |
|
Pages |
529-538 |
|
|
Keywords |
|
|
|
Abstract |
Symbol spotting can be defined as locating given query symbol in a large collection of graphical documents. In this paper we present a hierarchical graph representation for symbols. This representation allows graph matching methods to deal with low-level vectorization errors and, thus, to perform a robust symbol spotting. To show the potential of this approach, we conduct an experiment with the SESYD dataset. |
|
|
Address |
Miyajima-Itsukushima, Hiroshima |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN  |
978-3-642-34165-6 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
SSPR&SPR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ BDJ2012 |
Serial |
2126 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Gibert; Ernest Valveny; Horst Bunke; Alicia Fornes |


|
|
Title |
On the Correlation of Graph Edit Distance and L1 Distance in the Attribute Statistics Embedding Space |
Type |
Conference Article |
|
Year |
2012 |
Publication |
Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshop |
Abbreviated Journal |
|
|
|
Volume |
7626 |
Issue |
|
Pages |
135-143 |
|
|
Keywords |
|
|
|
Abstract |
Graph embeddings in vector spaces aim at assigning a pattern vector to every graph so that the problems of graph classification and clustering can be solved by using data processing algorithms originally developed for statistical feature vectors. An important requirement graph features should fulfil is that they reproduce as much as possible the properties among objects in the graph domain. In particular, it is usually desired that distances between pairs of graphs in the graph domain closely resemble those between their corresponding vectorial representations. In this work, we analyse relations between the edit distance in the graph domain and the L1 distance of the attribute statistics based embedding, for which good classification performance has been reported on various datasets. We show that there is actually a high correlation between the two kinds of distances provided that the corresponding parameter values that account for balancing the weight between node and edge based features are properly selected. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer-Berlag, Berlin |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN  |
978-3-642-34165-6 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
SSPR&SPR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ GVB2012c |
Serial |
2167 |
|
Permanent link to this record |