toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Albert Suso; Pau Riba; Oriol Ramos Terrades; Josep Llados edit  url
openurl 
  Title A Self-supervised Inverse Graphics Approach for Sketch Parametrization Type Conference Article
  Year 2021 Publication 16th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 12916 Issue Pages 28-42  
  Keywords  
  Abstract The study of neural generative models of handwritten text and human sketches is a hot topic in the computer vision field. The landmark SketchRNN provided a breakthrough by sequentially generating sketches as a sequence of waypoints, and more recent articles have managed to generate fully vector sketches by coding the strokes as Bézier curves. However, the previous attempts with this approach need them all a ground truth consisting in the sequence of points that make up each stroke, which seriously limits the datasets the model is able to train in. In this work, we present a self-supervised end-to-end inverse graphics approach that learns to embed each image to its best fit of Bézier curves. The self-supervised nature of the training process allows us to train the model in a wider range of datasets, but also to perform better after-training predictions by applying an overfitting process on the input binary image. We report qualitative an quantitative evaluations on the MNIST and the Quick, Draw! datasets.  
  Address Lausanne; Suissa; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ SRR2021 Serial 3675  
Permanent link to this record
 

 
Author Sanket Biswas; Pau Riba; Josep Llados; Umapada Pal edit   pdf
url  doi
openurl 
  Title Graph-Based Deep Generative Modelling for Document Layout Generation Type Conference Article
  Year 2021 Publication 16th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 12917 Issue Pages 525-537  
  Keywords  
  Abstract One of the major prerequisites for any deep learning approach is the availability of large-scale training data. When dealing with scanned document images in real world scenarios, the principal information of its content is stored in the layout itself. In this work, we have proposed an automated deep generative model using Graph Neural Networks (GNNs) to generate synthetic data with highly variable and plausible document layouts that can be used to train document interpretation systems, in this case, specially in digital mailroom applications. It is also the first graph-based approach for document layout generation task experimented on administrative document images, in this case, invoices.  
  Address Lausanne; Suissa; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) Medium  
  Area Expedition Conference  
  Notes DAG; 600.121; 600.140; 110.312 Approved no  
  Call Number Admin @ si @ BRL2021 Serial 3676  
Permanent link to this record
 

 
Author Josep Llados edit  openurl
  Title The 5G of Document Intelligence Type Conference Article
  Year 2021 Publication 3rd Workshop on Future of Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Lausanne; Suissa; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) Medium  
  Area Expedition Conference FDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ Serial 3677  
Permanent link to this record
 

 
Author Mohamed Ali Souibgui; Sanket Biswas; Sana Khamekhem Jemni; Yousri Kessentini; Alicia Fornes; Josep Llados; Umapada Pal edit   pdf
doi  openurl
  Title DocEnTr: An End-to-End Document Image Enhancement Transformer Type Conference Article
  Year 2022 Publication 26th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 1699-1705  
  Keywords Degradation; Head; Optical character recognition; Self-supervised learning; Benchmark testing; Transformers; Magnetic heads  
  Abstract Document images can be affected by many degradation scenarios, which cause recognition and processing difficulties. In this age of digitization, it is important to denoise them for proper usage. To address this challenge, we present a new encoder-decoder architecture based on vision transformers to enhance both machine-printed and handwritten document images, in an end-to-end fashion. The encoder operates directly on the pixel patches with their positional information without the use of any convolutional layers, while the decoder reconstructs a clean image from the encoded patches. Conducted experiments show a superiority of the proposed model compared to the state-of the-art methods on several DIBCO benchmarks. Code and models will be publicly available at: https://github.com/dali92002/DocEnTR  
  Address August 21-25, 2022 , Montréal Québec  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no  
  Call Number Admin @ si @ SBJ2022 Serial 3730  
Permanent link to this record
 

 
Author Adria Molina; Lluis Gomez; Oriol Ramos Terrades; Josep Llados edit   pdf
doi  openurl
  Title A Generic Image Retrieval Method for Date Estimation of Historical Document Collections Type Conference Article
  Year 2022 Publication Document Analysis Systems.15th IAPR International Workshop, (DAS2022) Abbreviated Journal  
  Volume 13237 Issue Pages 583–597  
  Keywords Date estimation; Document retrieval; Image retrieval; Ranking loss; Smooth-nDCG  
  Abstract Date estimation of historical document images is a challenging problem, with several contributions in the literature that lack of the ability to generalize from one dataset to others. This paper presents a robust date estimation system based in a retrieval approach that generalizes well in front of heterogeneous collections. We use a ranking loss function named smooth-nDCG to train a Convolutional Neural Network that learns an ordination of documents for each problem. One of the main usages of the presented approach is as a tool for historical contextual retrieval. It means that scholars could perform comparative analysis of historical images from big datasets in terms of the period where they were produced. We provide experimental evaluation on different types of documents from real datasets of manuscript and newspaper images.  
  Address La Rochelle, France; May 22–25, 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) Medium  
  Area Expedition Conference DAS  
  Notes DAG; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ MGR2022 Serial 3694  
Permanent link to this record
 

 
Author Josep Brugues Pujolras; Lluis Gomez; Dimosthenis Karatzas edit   pdf
doi  openurl
  Title A Multilingual Approach to Scene Text Visual Question Answering Type Conference Article
  Year 2022 Publication Document Analysis Systems.15th IAPR International Workshop, (DAS2022) Abbreviated Journal  
  Volume Issue Pages 65-79  
  Keywords Scene text; Visual question answering; Multilingual word embeddings; Vision and language; Deep learning  
  Abstract Scene Text Visual Question Answering (ST-VQA) has recently emerged as a hot research topic in Computer Vision. Current ST-VQA models have a big potential for many types of applications but lack the ability to perform well on more than one language at a time due to the lack of multilingual data, as well as the use of monolingual word embeddings for training. In this work, we explore the possibility to obtain bilingual and multilingual VQA models. In that regard, we use an already established VQA model that uses monolingual word embeddings as part of its pipeline and substitute them by FastText and BPEmb multilingual word embeddings that have been aligned to English. Our experiments demonstrate that it is possible to obtain bilingual and multilingual VQA models with a minimal loss in performance in languages not used during training, as well as a multilingual model trained in multiple languages that match the performance of the respective monolingual baselines.  
  Address La Rochelle, France; May 22–25, 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) Medium  
  Area Expedition Conference DAS  
  Notes DAG; 611.004; 600.155; 601.002 Approved no  
  Call Number Admin @ si @ BGK2022b Serial 3695  
Permanent link to this record
 

 
Author Oriol Ramos Terrades; Albert Berenguel; Debora Gil edit   pdf
doi  openurl
  Title A Flexible Outlier Detector Based on a Topology Given by Graph Communities Type Journal Article
  Year 2022 Publication Big Data Research Abbreviated Journal BDR  
  Volume 29 Issue Pages 100332  
  Keywords Classification algorithms; Detection algorithms; Description of feature space local structure; Graph communities; Machine learning algorithms; Outlier detectors  
  Abstract Outlier detection is essential for optimal performance of machine learning methods and statistical predictive models. Their detection is especially determinant in small sample size unbalanced problems, since in such settings outliers become highly influential and significantly bias models. This particular experimental settings are usual in medical applications, like diagnosis of rare pathologies, outcome of experimental personalized treatments or pandemic emergencies. In contrast to population-based methods, neighborhood based local approaches compute an outlier score from the neighbors of each sample, are simple flexible methods that have the potential to perform well in small sample size unbalanced problems. A main concern of local approaches is the impact that the computation of each sample neighborhood has on the method performance. Most approaches use a distance in the feature space to define a single neighborhood that requires careful selection of several parameters, like the number of neighbors.
This work presents a local approach based on a local measure of the heterogeneity of sample labels in the feature space considered as a topological manifold. Topology is computed using the communities of a weighted graph codifying mutual nearest neighbors in the feature space. This way, we provide with a set of multiple neighborhoods able to describe the structure of complex spaces without parameter fine tuning. The extensive experiments on real-world and synthetic data sets show that our approach outperforms, both, local and global strategies in multi and single view settings.
 
  Address August 28, 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) Medium  
  Area Expedition Conference  
  Notes DAG; IAM; 600.140; 600.121; 600.139; 600.145; 600.159 Approved no  
  Call Number Admin @ si @ RBG2022a Serial 3718  
Permanent link to this record
 

 
Author Giuseppe De Gregorio; Sanket Biswas; Mohamed Ali Souibgui; Asma Bensalah; Josep Llados; Alicia Fornes; Angelo Marcelli edit   pdf
doi  openurl
  Title A Few Shot Multi-representation Approach for N-Gram Spotting in Historical Manuscripts Type Conference Article
  Year 2022 Publication Frontiers in Handwriting Recognition. International Conference on Frontiers in Handwriting Recognition (ICFHR2022) Abbreviated Journal  
  Volume 13639 Issue Pages 3-12  
  Keywords N-gram spotting; Few-shot learning; Multimodal understanding; Historical handwritten collections  
  Abstract Despite recent advances in automatic text recognition, the performance remains moderate when it comes to historical manuscripts. This is mainly because of the scarcity of available labelled data to train the data-hungry Handwritten Text Recognition (HTR) models. The Keyword Spotting System (KWS) provides a valid alternative to HTR due to the reduction in error rate, but it is usually limited to a closed reference vocabulary. In this paper, we propose a few-shot learning paradigm for spotting sequences of a few characters (N-gram) that requires a small amount of labelled training data. We exhibit that recognition of important n-grams could reduce the system’s dependency on vocabulary. In this case, an out-of-vocabulary (OOV) word in an input handwritten line image could be a sequence of n-grams that belong to the lexicon. An extensive experimental evaluation of our proposed multi-representation approach was carried out on a subset of Bentham’s historical manuscript collections to obtain some really promising results in this direction.  
  Address December 04 – 07, 2022; Hyderabad, India  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) Medium  
  Area Expedition Conference ICFHR  
  Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no  
  Call Number Admin @ si @ GBS2022 Serial 3733  
Permanent link to this record
 

 
Author Arnau Baro; Carles Badal; Pau Torras; Alicia Fornes edit   pdf
url  openurl
  Title Handwritten Historical Music Recognition through Sequence-to-Sequence with Attention Mechanism Type Conference Article
  Year 2022 Publication 3rd International Workshop on Reading Music Systems (WoRMS2021) Abbreviated Journal  
  Volume Issue Pages 55-59  
  Keywords Optical Music Recognition; Digits; Image Classification  
  Abstract Despite decades of research in Optical Music Recognition (OMR), the recognition of old handwritten music scores remains a challenge because of the variabilities in the handwriting styles, paper degradation, lack of standard notation, etc. Therefore, the research in OMR systems adapted to the particularities of old manuscripts is crucial to accelerate the conversion of music scores existing in archives into digital libraries, fostering the dissemination and preservation of our music heritage. In this paper we explore the adaptation of sequence-to-sequence models with attention mechanism (used in translation and handwritten text recognition) and the generation of specific synthetic data for recognizing old music scores. The experimental validation demonstrates that our approach is promising, especially when compared with long short-term memory neural networks.  
  Address July 23, 2021, Alicante (Spain)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) Medium  
  Area Expedition Conference WoRMS  
  Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no  
  Call Number Admin @ si @ BBT2022 Serial 3734  
Permanent link to this record
 

 
Author Pau Torras; Arnau Baro; Alicia Fornes; Lei Kang edit   pdf
openurl 
  Title Improving Handwritten Music Recognition through Language Model Integration Type Conference Article
  Year 2022 Publication 4th International Workshop on Reading Music Systems (WoRMS2022) Abbreviated Journal  
  Volume Issue Pages 42-46  
  Keywords optical music recognition; historical sources; diversity; music theory; digital humanities  
  Abstract Handwritten Music Recognition, especially in the historical domain, is an inherently challenging endeavour; paper degradation artefacts and the ambiguous nature of handwriting make recognising such scores an error-prone process, even for the current state-of-the-art Sequence to Sequence models. In this work we propose a way of reducing the production of statistically implausible output sequences by fusing a Language Model into a recognition Sequence to Sequence model. The idea is leveraging visually-conditioned and context-conditioned output distributions in order to automatically find and correct any mistakes that would otherwise break context significantly. We have found this approach to improve recognition results to 25.15 SER (%) from a previous best of 31.79 SER (%) in the literature.  
  Address November 18, 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) Medium  
  Area Expedition Conference WoRMS  
  Notes DAG; 600.121; 600.162; 602.230 Approved no  
  Call Number Admin @ si @ TBF2022 Serial 3735  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: