|
Records |
Links |
|
Author |
Arnau Baro; Pau Riba; Jorge Calvo-Zaragoza; Alicia Fornes |


|
|
Title |
Optical Music Recognition by Recurrent Neural Networks |
Type |
Conference Article |
|
Year |
2017 |
Publication |
14th IAPR International Workshop on Graphics Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
25-26 |
|
|
Keywords |
Optical Music Recognition; Recurrent Neural Network; Long Short-Term Memory |
|
|
Abstract |
Optical Music Recognition is the task of transcribing a music score into a machine readable format. Many music scores are written in a single staff, and therefore, they could be treated as a sequence. Therefore, this work explores the use of Long Short-Term Memory (LSTM) Recurrent Neural Networks for reading the music score sequentially, where the LSTM helps in keeping the context. For training, we have used a synthetic dataset of more than 40000 images, labeled at primitive level |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN  |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.097; 601.302; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BRC2017 |
Serial |
3056 |
|
Permanent link to this record |
|
|
|
|
Author |
Sounak Dey; Anjan Dutta; Josep Llados; Alicia Fornes; Umapada Pal |


|
|
Title |
Shallow Neural Network Model for Hand-drawn Symbol Recognition in Multi-Writer Scenario |
Type |
Conference Article |
|
Year |
2017 |
Publication |
14th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
31-32 |
|
|
Keywords |
|
|
|
Abstract |
One of the main challenges in hand drawn symbol recognition is the variability among symbols because of the different writer styles. In this paper, we present and discuss some results recognizing hand-drawn symbols with a shallow neural network. A neural network model inspired from the LeNet architecture has been used to achieve state-of-the-art results with
very less training data, which is very unlikely to the data hungry deep neural network. From the results, it has become evident that the neural network architectures can efficiently describe and recognize hand drawn symbols from different writers and can model the inter author aberration |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN  |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.097; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DDL2017 |
Serial |
3057 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Anjan Dutta; Josep Llados; Alicia Fornes |


|
|
Title |
Graph-based deep learning for graphics classification |
Type |
Conference Article |
|
Year |
2017 |
Publication |
14th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
29-30 |
|
|
Keywords |
|
|
|
Abstract |
Graph-based representations are a common way to deal with graphics recognition problems. However, previous works were mainly focused on developing learning-free techniques. The success of deep learning frameworks have proved that learning is a powerful tool to solve many problems, however it is not straightforward to extend these methodologies to non euclidean data such as graphs. On the other hand, graphs are a good representational structure for graphical entities. In this work, we present some deep learning techniques that have been proposed in the literature for graph-based representations and
we show how they can be used in graphics recognition problems |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN  |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.097; 601.302; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RDL2017b |
Serial |
3058 |
|
Permanent link to this record |
|
|
|
|
Author |
Adria Rico; Alicia Fornes |


|
|
Title |
Camera-based Optical Music Recognition using a Convolutional Neural Network |
Type |
Conference Article |
|
Year |
2017 |
Publication |
12th IAPR International Workshop on Graphics Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
27-28 |
|
|
Keywords |
optical music recognition; document analysis; convolutional neural network; deep learning |
|
|
Abstract |
Optical Music Recognition (OMR) consists in recognizing images of music scores. Contrary to expectation, the current OMR systems usually fail when recognizing images of scores captured by digital cameras and smartphones. In this work, we propose a camera-based OMR system based on Convolutional Neural Networks, showing promising preliminary results |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN  |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG;600.097; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RiF2017 |
Serial |
3059 |
|
Permanent link to this record |
|
|
|
|
Author |
Alicia Fornes; Beata Megyesi; Joan Mas |

|
|
Title |
Transcription of Encoded Manuscripts with Image Processing Techniques |
Type |
Conference Article |
|
Year |
2017 |
Publication |
Digital Humanities Conference |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
441-443 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN  |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DH |
|
|
Notes |
DAG; 600.097; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ FMM2017 |
Serial |
3061 |
|
Permanent link to this record |
|
|
|
|
Author |
Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate; Marçal Rusiñol; Francesc J. Ferri |


|
|
Title |
Fast Kernel Generalized Discriminative Common Vectors for Feature Extraction |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Journal of Mathematical Imaging and Vision |
Abbreviated Journal |
JMIV |
|
|
Volume |
60 |
Issue |
4 |
Pages |
512-524 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a supervised subspace learning method called Kernel Generalized Discriminative Common Vectors (KGDCV), as a novel extension of the known Discriminative Common Vectors method with Kernels. Our method combines the advantages of kernel methods to model complex data and solve nonlinear
problems with moderate computational complexity, with the better generalization properties of generalized approaches for large dimensional data. These attractive combination makes KGDCV specially suited for feature extraction and classification in computer vision, image processing and pattern recognition applications. Two different approaches to this generalization are proposed, a first one based on the kernel trick (KT) and a second one based on the nonlinear projection trick (NPT) for even higher efficiency. Both methodologies
have been validated on four different image datasets containing faces, objects and handwritten digits, and compared against well known non-linear state-of-art methods. Results show better discriminant properties than other generalized approaches both linear or kernel. In addition, the KGDCV-NPT approach presents a considerable computational gain, without compromising the accuracy of the model. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN  |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; ADAS; 600.086; 600.130; 600.121; 600.118; 600.129;IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ DMH2018a |
Serial |
3062 |
|
Permanent link to this record |
|
|
|
|
Author |
Dimosthenis Karatzas; Lluis Gomez; Marçal Rusiñol |

|
|
Title |
The Robust Reading Competition Annotation and Evaluation Platform |
Type |
Conference Article |
|
Year |
2017 |
Publication |
1st International Workshop on Open Services and Tools for Document Analysis |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
The ICDAR Robust Reading Competition (RRC), initiated in 2003 and re-established in 2011, has become the defacto evaluation standard for the international community. Concurrent with its second incarnation in 2011, a continuous effort started to develop an online framework to facilitate the hosting and management of competitions. This short paper briefly outlines the Robust Reading Competition Annotation and Evaluation Platform, the backbone of the Robust Reading Competition, comprising a collection of tools and processes that aim to simplify the management and annotation
of data, and to provide online and offline performance evaluation and analysis services |
|
|
Address |
Kyoto; Japan; November 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN  |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR-OST |
|
|
Notes |
DAG; 600.084; 600.121; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ KGR2017 |
Serial |
3063 |
|
Permanent link to this record |
|
|
|
|
Author |
Raul Gomez; Baoguang Shi; Lluis Gomez; Lukas Numann; Andreas Veit; Jiri Matas; Serge Belongie; Dimosthenis Karatzas |

|
|
Title |
ICDAR2017 Robust Reading Challenge on COCO-Text |
Type |
Conference Article |
|
Year |
2017 |
Publication |
14th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Kyoto; Japan; November 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN  |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GSG2017 |
Serial |
3076 |
|
Permanent link to this record |
|
|
|
|
Author |
Masakazu Iwamura; Naoyuki Morimoto; Keishi Tainaka; Dena Bazazian; Lluis Gomez; Dimosthenis Karatzas |

|
|
Title |
ICDAR2017 Robust Reading Challenge on Omnidirectional Video |
Type |
Conference Article |
|
Year |
2017 |
Publication |
14th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Results of ICDAR 2017 Robust Reading Challenge on Omnidirectional Video are presented. This competition uses Downtown Osaka Scene Text (DOST) Dataset that was captured in Osaka, Japan with an omnidirectional camera. Hence, it consists of sequential images (videos) of different view angles. Regarding the sequential images as videos (video mode), two tasks of localisation and end-to-end recognition are prepared. Regarding them as a set of still images (still image mode), three tasks of localisation, cropped word recognition and end-to-end recognition are prepared. As the dataset has been captured in Japan, the dataset contains Japanese text but also include text consisting of alphanumeric characters (Latin text). Hence, a submitted result for each task is evaluated in three ways: using Japanese only ground truth (GT), using Latin only GT and using combined GTs of both. Finally, by the submission deadline, we have received two submissions in the text localisation task of the still image mode. We intend to continue the competition in the open mode. Expecting further submissions, in this report we provide baseline results in all the tasks in addition to the submissions from the community. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN  |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.084; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ IMT2017 |
Serial |
3077 |
|
Permanent link to this record |
|
|
|
|
Author |
Suman Ghosh; Ernest Valveny |


|
|
Title |
R-PHOC: Segmentation-Free Word Spotting using CNN |
Type |
Conference Article |
|
Year |
2017 |
Publication |
14th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Convolutional neural network; Image segmentation; Artificial neural network; Nearest neighbor search |
|
|
Abstract |
arXiv:1707.01294
This paper proposes a region based convolutional neural network for segmentation-free word spotting. Our network takes as input an image and a set of word candidate bound- ing boxes and embeds all bounding boxes into an embedding space, where word spotting can be casted as a simple nearest neighbour search between the query representation and each of the candidate bounding boxes. We make use of PHOC embedding as it has previously achieved significant success in segmentation- based word spotting. Word candidates are generated using a simple procedure based on grouping connected components using some spatial constraints. Experiments show that R-PHOC which operates on images directly can improve the current state-of- the-art in the standard GW dataset and performs as good as PHOCNET in some cases designed for segmentation based word spotting. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN  |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GhV2017a |
Serial |
3079 |
|
Permanent link to this record |