|
Records |
Links |
|
Author |
Christophe Rigaud; Clement Guerin; Dimosthenis Karatzas; Jean-Christophe Burie; Jean-Marc Ogier |
|
|
Title |
Knowledge-driven understanding of images in comic books |
Type |
Journal Article |
|
Year |
2015 |
Publication |
International Journal on Document Analysis and Recognition |
Abbreviated Journal |
IJDAR |
|
|
Volume |
18 |
Issue |
3 |
Pages |
199-221 |
|
|
Keywords |
Document Understanding; comics analysis; expert system |
|
|
Abstract |
Document analysis is an active field of research, which can attain a complete understanding of the semantics of a given document. One example of the document understanding process is enabling a computer to identify the key elements of a comic book story and arrange them according to a predefined domain knowledge. In this study, we propose a knowledge-driven system that can interact with bottom-up and top-down information to progressively understand the content of a document. We model the comic book’s and the image processing domains knowledge for information consistency analysis. In addition, different image processing methods are improved or developed to extract panels, balloons, tails, texts, comic characters and their semantic relations in an unsupervised way. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1433-2833 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.056; 600.077 |
Approved |
no |
|
|
Call Number |
RGK2015 |
Serial |
2595 |
|
Permanent link to this record |
|
|
|
|
Author |
Adarsh Tiwari; Sanket Biswas; Josep Llados |
|
|
Title |
Can Pre-trained Language Models Help in Understanding Handwritten Symbols? |
Type |
Conference Article |
|
Year |
2023 |
Publication |
17th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
14193 |
Issue |
|
Pages |
199–211 |
|
|
Keywords |
|
|
|
Abstract |
The emergence of transformer models like BERT, GPT-2, GPT-3, RoBERTa, T5 for natural language understanding tasks has opened the floodgates towards solving a wide array of machine learning tasks in other modalities like images, audio, music, sketches and so on. These language models are domain-agnostic and as a result could be applied to 1-D sequences of any kind. However, the key challenge lies in bridging the modality gap so that they could generate strong features beneficial for out-of-domain tasks. This work focuses on leveraging the power of such pre-trained language models and discusses the challenges in predicting challenging handwritten symbols and alphabets. |
|
|
Address |
San Jose; CA; USA; August 2023 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ TBL2023 |
Serial |
3908 |
|
Permanent link to this record |
|
|
|
|
Author |
Josep Llados; Enric Marti |
|
|
Title |
A graph-edit algorithm for hand-drawn graphical document recognition and their automatic introduction into CAD systems |
Type |
Journal Article |
|
Year |
1999 |
Publication |
Machine Graphics & Vision |
Abbreviated Journal |
|
|
|
Volume |
8 |
Issue |
|
Pages |
195-211 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG;IAM; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ LIM1999 |
Serial |
1568 |
|
Permanent link to this record |
|
|
|
|
Author |
Andreas Fischer; Ching Y. Suen; Volkmar Frinken; Kaspar Riesen; Horst Bunke |
|
|
Title |
A Fast Matching Algorithm for Graph-Based Handwriting Recognition |
Type |
Conference Article |
|
Year |
2013 |
Publication |
9th IAPR – TC15 Workshop on Graph-based Representation in Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
7877 |
Issue |
|
Pages |
194-203 |
|
|
Keywords |
|
|
|
Abstract |
The recognition of unconstrained handwriting images is usually based on vectorial representation and statistical classification. Despite their high representational power, graphs are rarely used in this field due to a lack of efficient graph-based recognition methods. Recently, graph similarity features have been proposed to bridge the gap between structural representation and statistical classification by means of vector space embedding. This approach has shown a high performance in terms of accuracy but had shortcomings in terms of computational speed. The time complexity of the Hungarian algorithm that is used to approximate the edit distance between two handwriting graphs is demanding for a real-world scenario. In this paper, we propose a faster graph matching algorithm which is derived from the Hausdorff distance. On the historical Parzival database it is demonstrated that the proposed method achieves a speedup factor of 12.9 without significant loss in recognition accuracy. |
|
|
Address |
Vienna; Austria; May 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-642-38220-8 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GBR |
|
|
Notes |
DAG; 600.045; 605.203 |
Approved |
no |
|
|
Call Number |
Admin @ si @ FSF2013 |
Serial |
2294 |
|
Permanent link to this record |
|
|
|
|
Author |
Ernest Valveny; Enric Marti |
|
|
Title |
Deformable Template Matching within a Bayesian Framework for Hand-Written Graphic Symbol Recognition |
Type |
Journal Article |
|
Year |
2000 |
Publication |
Graphics Recognition Recent Advances |
Abbreviated Journal |
|
|
|
Volume |
1941 |
Issue |
|
Pages |
193-208 |
|
|
Keywords |
|
|
|
Abstract |
We describe a method for hand-drawn symbol recognition based on deformable template matching able to handle uncertainty and imprecision inherent to hand-drawing. Symbols are represented as a set of straight lines and their deformations as geometric transformations of these lines. Matching, however, is done over the original binary image to avoid loss of information during line detection. It is defined as an energy minimization problem, using a Bayesian framework which allows to combine fidelity to ideal shape of the symbol and flexibility to modify the symbol in order to get the best fit to the binary input image. Prior to matching, we find the best global transformation of the symbol to start the recognition process, based on the distance between symbol lines and image lines. We have applied this method to the recognition of dimensions and symbols in architectural floor plans and we show its flexibility to recognize distorted symbols. |
|
|
Address |
|
|
|
Corporate Author |
Springer Verlag |
Thesis |
|
|
|
Publisher |
Springer Verlag |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG;IAM; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ MVA2000 |
Serial |
1655 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Gomez; Dimosthenis Karatzas |
|
|
Title |
A fine-grained approach to scene text script identification |
Type |
Conference Article |
|
Year |
2016 |
Publication |
12th IAPR Workshop on Document Analysis Systems |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
192-197 |
|
|
Keywords |
|
|
|
Abstract |
This paper focuses on the problem of script identification in unconstrained scenarios. Script identification is an important prerequisite to recognition, and an indispensable condition for automatic text understanding systems designed for multi-language environments. Although widely studied for document images and handwritten documents, it remains an almost unexplored territory for scene text images. We detail a novel method for script identification in natural images that combines convolutional features and the Naive-Bayes Nearest Neighbor classifier. The proposed framework efficiently exploits the discriminative power of small stroke-parts, in a fine-grained classification framework. In addition, we propose a new public benchmark dataset for the evaluation of joint text detection and script identification in natural scenes. Experiments done in this new dataset demonstrate that the proposed method yields state of the art results, while it generalizes well to different datasets and variable number of scripts. The evidence provided shows that multi-lingual scene text recognition in the wild is a viable proposition. Source code of the proposed method is made available online. |
|
|
Address |
Santorini; Grecia; April 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DAS |
|
|
Notes |
DAG; 601.197; 600.084 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GoK2016b |
Serial |
2863 |
|
Permanent link to this record |
|
|
|
|
Author |
Partha Pratim Roy; Umapada Pal; Josep Llados |
|
|
Title |
Query Driven Word Retrieval in Graphical Documents |
Type |
Conference Article |
|
Year |
2010 |
Publication |
9th IAPR International Workshop on Document Analysis Systems |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
191–198 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we present an approach towards the retrieval of words from graphical document images. In graphical documents, due to presence of multi-oriented characters in non-structured layout, word indexing is a challenging task. The proposed approach uses recognition results of individual components to form character pairs with the neighboring components. An indexing scheme is designed to store the spatial description of components and to access them efficiently. Given a query text word (ascii/unicode format), the character pairs present in it are searched in the document. Next the retrieved character pairs are linked sequentially to form character string. Dynamic programming is applied to find different instances of query words. A string edit distance is used here to match the query word as the objective function. Recognition of multi-scale and multi-oriented character component is done using Support Vector Machine classifier. To consider multi-oriented character strings the features used in the SVM are invariant to character orientation. Experimental results show that the method is efficient to locate a query word from multi-oriented text in graphical documents. |
|
|
Address |
Boston; USA |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-1-60558-773-8 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DAS |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ RPL2010b |
Serial |
1433 |
|
Permanent link to this record |
|
|
|
|
Author |
T.O. Nguyen; Salvatore Tabbone; Oriol Ramos Terrades |
|
|
Title |
Symbol Descriptor Based on Shape Context and Vector Model of Information Retrieval |
Type |
Conference Article |
|
Year |
2008 |
Publication |
Proceedings of the 8th IAPR International Workshop on Document Analysis Systems, |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
191-197 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Nara, Japan |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DAS |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ NTR2008a |
Serial |
1873 |
|
Permanent link to this record |
|
|
|
|
Author |
Jose Antonio Rodriguez; Gemma Sanchez; Josep Llados |
|
|
Title |
Categorization of Digital Ink Elements using Spectral Features |
Type |
Book Chapter |
|
Year |
2008 |
Publication |
Graphics Recognition: Recent Advances and New Opportunities |
Abbreviated Journal |
|
|
|
Volume |
5046 |
Issue |
|
Pages |
188–198 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer–Verlag |
Place of Publication |
|
Editor |
W. Liu, J. Llados, J.M. Ogier |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ RSL2008 |
Serial |
1099 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; Agnes Borras; Josep Llados |
|
|
Title |
Relational Indexing of Vectorial Primitives for Symbol Spotting in Line-Drawing Images |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
31 |
Issue |
3 |
Pages |
188–201 |
|
|
Keywords |
Document image analysis and recognition, Graphics recognition, Symbol spotting ,Vectorial representations, Line-drawings |
|
|
Abstract |
This paper presents a symbol spotting approach for indexing by content a database of line-drawing images. As line-drawings are digital-born documents designed by vectorial softwares, instead of using a pixel-based approach, we present a spotting method based on vector primitives. Graphical symbols are represented by a set of vectorial primitives which are described by an off-the-shelf shape descriptor. A relational indexing strategy aims to retrieve symbol locations into the target documents by using a combined numerical-relational description of 2D structures. The zones which are likely to contain the queried symbol are validated by a Hough-like voting scheme. In addition, a performance evaluation framework for symbol spotting in graphical documents is proposed. The presented methodology has been evaluated with a benchmarking set of architectural documents achieving good performance results. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ RBL2010 |
Serial |
1177 |
|
Permanent link to this record |