toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Alicia Fornes; V.C.Kieu; M. Visani; N.Journet; Anjan Dutta edit  doi
isbn  openurl
  Title The ICDAR/GREC 2013 Music Scores Competition: Staff Removal Type Book Chapter
  Year 2014 Publication Graphics Recognition. Current Trends and Challenges Abbreviated Journal  
  Volume 8746 Issue Pages (down) 207-220  
  Keywords Competition; Graphics recognition; Music scores; Writer identification; Staff removal  
  Abstract The first competition on music scores that was organized at ICDAR and GREC in 2011 awoke the interest of researchers, who participated in both staff removal and writer identification tasks. In this second edition, we focus on the staff removal task and simulate a real case scenario concerning old and degraded music scores. For this purpose, we have generated a new set of semi-synthetic images using two degradation models that we previously introduced: local noise and 3D distortions. In this extended paper we provide an extended description of the dataset, degradation models, evaluation metrics, the participant’s methods and the obtained results that could not be presented at ICDAR and GREC proceedings due to page limitations.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor B.Lamiroy; J.-M. Ogier  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-662-44853-3 Medium  
  Area Expedition Conference  
  Notes DAG; 600.077; 600.061 Approved no  
  Call Number Admin @ si @ FKV2014 Serial 2581  
Permanent link to this record
 

 
Author Lluis Gomez; Dimosthenis Karatzas edit   pdf
url  doi
openurl 
  Title Object Proposals for Text Extraction in the Wild Type Conference Article
  Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages (down) 206 - 210  
  Keywords  
  Abstract Object Proposals is a recent computer vision technique receiving increasing interest from the research community. Its main objective is to generate a relatively small set of bounding box proposals that are most likely to contain objects of interest. The use of Object Proposals techniques in the scene text understanding field is innovative. Motivated by the success of powerful while expensive techniques to recognize words in a holistic way, Object Proposals techniques emerge as an alternative to the traditional text detectors. In this paper we study to what extent the existing generic Object Proposals methods may be useful for scene text understanding. Also, we propose a new Object Proposals algorithm that is specifically designed for text and compare it with other generic methods in the state of the art. Experiments show that our proposal is superior in its ability of producing good quality word proposals in an efficient way. The source code of our method is made publicly available  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.077; 600.084; 601.197 Approved no  
  Call Number Admin @ si @ GoK2015 Serial 2691  
Permanent link to this record
 

 
Author Agnes Borras; Josep Llados edit  isbn
openurl 
  Title Corest: A measure of color and space stability to detect salient regions according to human criteria Type Conference Article
  Year 2009 Publication 5th International Conference on Computer Vision Theory and Applications Abbreviated Journal  
  Volume Issue Pages (down) 204-209  
  Keywords  
  Abstract  
  Address Lisboa, Portugal  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-989-8111-69-2 Medium  
  Area Expedition Conference VISAPP  
  Notes DAG Approved no  
  Call Number DAG @ dag @ BoL2009 Serial 1225  
Permanent link to this record
 

 
Author Gemma Sanchez; Josep Llados; K. Tombre edit  doi
openurl 
  Title A mean string algorithm to compute the average among a set of 2D shapes Type Journal Article
  Year 2002 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 23 Issue 1-3 Pages (down) 203–214  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; IF: 0.409 Approved no  
  Call Number DAG @ dag @ SLT2002 Serial 275  
Permanent link to this record
 

 
Author Pau Riba; Josep Llados; Alicia Fornes; Anjan Dutta edit  url
openurl 
  Title Large-scale graph indexing using binary embeddings of node contexts for information spotting in document image databases Type Journal Article
  Year 2017 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 87 Issue Pages (down) 203-211  
  Keywords  
  Abstract Graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their representational power in front of classical appearance-based representations. However, retrieving a query graph from a large dataset of graphs implies a high computational complexity. The most important property for a large-scale retrieval is the search time complexity to be sub-linear in the number of database examples. With this aim, in this paper we propose a graph indexation formalism applied to visual retrieval. A binary embedding is defined as hashing keys for graph nodes. Given a database of labeled graphs, graph nodes are complemented with vectors of attributes representing their local context. Then, each attribute vector is converted to a binary code applying a binary-valued hash function. Therefore, graph retrieval is formulated in terms of finding target graphs in the database whose nodes have a small Hamming distance from the query nodes, easily computed with bitwise logical operators. As an application example, we validate the performance of the proposed methods in different real scenarios such as handwritten word spotting in images of historical documents or symbol spotting in architectural floor plans.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 602.006; 603.053; 600.121 Approved no  
  Call Number RLF2017b Serial 2873  
Permanent link to this record
 

 
Author Alicia Fornes; Xavier Otazu; Josep Llados edit   pdf
doi  openurl
  Title Show through cancellation and image enhancement by multiresolution contrast processing Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages (down) 200-204  
  Keywords  
  Abstract Historical documents suffer from different types of degradation and noise such as background variation, uneven illumination or dark spots. In case of double-sided documents, another common problem is that the back side of the document usually interferes with the front side because of the transparency of the document or ink bleeding. This effect is called the show through phenomenon. Many methods are developed to solve these problems, and in the case of show-through, by scanning and matching both the front and back sides of the document. In contrast, our approach is designed to use only one side of the scanned document. We hypothesize that show-trough are low contrast components, while foreground components are high contrast ones. A Multiresolution Contrast (MC) decomposition is presented in order to estimate the contrast of features at different spatial scales. We cancel the show-through phenomenon by thresholding these low contrast components. This decomposition is also able to enhance the image removing shadowed areas by weighting spatial scales. Results show that the enhanced images improve the readability of the documents, allowing scholars both to recover unreadable words and to solve ambiguities.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 602.006; 600.045; 600.061; 600.052;CIC Approved no  
  Call Number Admin @ si @ FOL2013 Serial 2241  
Permanent link to this record
 

 
Author Partha Pratim Roy; Umapada Pal; Josep Llados edit  doi
isbn  openurl
  Title Touching Text Character Localization in Graphical Documents using SIFT Type Book Chapter
  Year 2010 Publication Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers Abbreviated Journal  
  Volume 6020 Issue Pages (down) 199-211  
  Keywords Support Vector Machine; Text Component; Graphical Line; Document Image; Scale Invariant Feature Transform  
  Abstract Interpretation of graphical document images is a challenging task as it requires proper understanding of text/graphics symbols present in such documents. Difficulties arise in graphical document recognition when text and symbol overlapped/touched. Intersection of text and symbols with graphical lines and curves occur frequently in graphical documents and hence separation of such symbols is very difficult.
Several pattern recognition and classification techniques exist to recognize isolated text/symbol. But, the touching/overlapping text and symbol recognition has not yet been dealt successfully. An interesting technique, Scale Invariant Feature Transform (SIFT), originally devised for object recognition can take care of overlapping problems. Even if SIFT features have emerged as a very powerful object descriptors, their employment in graphical documents context has not been investigated much. In this paper we present the adaptation of the SIFT approach in the context of text character localization (spotting) in graphical documents. We evaluate the applicability of this technique in such documents and discuss the scope of improvement by combining some state-of-the-art approaches.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-13727-3 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ RPL2010c Serial 2408  
Permanent link to this record
 

 
Author Christophe Rigaud; Clement Guerin; Dimosthenis Karatzas; Jean-Christophe Burie; Jean-Marc Ogier edit  doi
openurl 
  Title Knowledge-driven understanding of images in comic books Type Journal Article
  Year 2015 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 18 Issue 3 Pages (down) 199-221  
  Keywords Document Understanding; comics analysis; expert system  
  Abstract Document analysis is an active field of research, which can attain a complete understanding of the semantics of a given document. One example of the document understanding process is enabling a computer to identify the key elements of a comic book story and arrange them according to a predefined domain knowledge. In this study, we propose a knowledge-driven system that can interact with bottom-up and top-down information to progressively understand the content of a document. We model the comic book’s and the image processing domains knowledge for information consistency analysis. In addition, different image processing methods are improved or developed to extract panels, balloons, tails, texts, comic characters and their semantic relations in an unsupervised way.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.056; 600.077 Approved no  
  Call Number RGK2015 Serial 2595  
Permanent link to this record
 

 
Author Josep Llados; Enric Marti edit  openurl
  Title A graph-edit algorithm for hand-drawn graphical document recognition and their automatic introduction into CAD systems Type Journal Article
  Year 1999 Publication Machine Graphics & Vision Abbreviated Journal  
  Volume 8 Issue Pages (down) 195-211  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG;IAM; Approved no  
  Call Number IAM @ iam @ LIM1999 Serial 1568  
Permanent link to this record
 

 
Author Andreas Fischer; Ching Y. Suen; Volkmar Frinken; Kaspar Riesen; Horst Bunke edit   pdf
doi  isbn
openurl 
  Title A Fast Matching Algorithm for Graph-Based Handwriting Recognition Type Conference Article
  Year 2013 Publication 9th IAPR – TC15 Workshop on Graph-based Representation in Pattern Recognition Abbreviated Journal  
  Volume 7877 Issue Pages (down) 194-203  
  Keywords  
  Abstract The recognition of unconstrained handwriting images is usually based on vectorial representation and statistical classification. Despite their high representational power, graphs are rarely used in this field due to a lack of efficient graph-based recognition methods. Recently, graph similarity features have been proposed to bridge the gap between structural representation and statistical classification by means of vector space embedding. This approach has shown a high performance in terms of accuracy but had shortcomings in terms of computational speed. The time complexity of the Hungarian algorithm that is used to approximate the edit distance between two handwriting graphs is demanding for a real-world scenario. In this paper, we propose a faster graph matching algorithm which is derived from the Hausdorff distance. On the historical Parzival database it is demonstrated that the proposed method achieves a speedup factor of 12.9 without significant loss in recognition accuracy.  
  Address Vienna; Austria; May 2013  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-38220-8 Medium  
  Area Expedition Conference GBR  
  Notes DAG; 600.045; 605.203 Approved no  
  Call Number Admin @ si @ FSF2013 Serial 2294  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: