toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author David Fernandez; Josep Llados; Alicia Fornes edit  doi
isbn  openurl
  Title Handwritten Word Spotting in Old Manuscript Images Using a Pseudo-Structural Descriptor Organized in a Hash Structure Type Conference Article
  Year 2011 Publication 5th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume 6669 Issue Pages (down) 628-635  
  Keywords  
  Abstract There are lots of historical handwritten documents with information that can be used for several studies and projects. The Document Image Analysis and Recognition community is interested in preserving these documents and extracting all the valuable information from them. Handwritten word-spotting is the pattern classification task which consists in detecting handwriting word images. In this work, we have used a query-by-example formalism: we have matched an input image with one or multiple images from handwritten documents to determine the distance that might indicate a correspondence. We have developed an approach based in characteristic Loci Features stored in a hash structure. Document images of the marriage licences of the Cathedral of Barcelona are used as the benchmarking database.  
  Address Las Palmas de Gran Canaria. Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Jordi Vitria; Joao Miguel Raposo; Mario Hernandez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-21256-7 Medium  
  Area Expedition Conference IbPRIA  
  Notes DAG Approved no  
  Call Number Admin @ si @ FLF2011 Serial 1742  
Permanent link to this record
 

 
Author Nuria Cirera; Alicia Fornes; Josep Llados edit   pdf
url  doi
openurl 
  Title Hidden Markov model topology optimization for handwriting recognition Type Conference Article
  Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages (down) 626-630  
  Keywords  
  Abstract In this paper we present a method to optimize the topology of linear left-to-right hidden Markov models. These models are very popular for sequential signals modeling on tasks such as handwriting recognition. Many topology definition methods select the number of states for a character model based
on character length. This can be a drawback when characters are shorter than the minimum allowed by the model, since they can not be properly trained nor recognized. The proposed method optimizes the number of states per model by automatically including convenient skip-state transitions and therefore it avoids the aforementioned problem.We discuss and compare our method with other character length-based methods such the Fixed, Bakis and Quantile methods. Our proposal performs well on off-line handwriting recognition task.
 
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.061; 602.006; 600.077 Approved no  
  Call Number Admin @ si @ CFL2015 Serial 2639  
Permanent link to this record
 

 
Author Albert Gordo; Marçal Rusiñol; Dimosthenis Karatzas; Andrew Bagdanov edit   pdf
doi  openurl
  Title Document Classification and Page Stream Segmentation for Digital Mailroom Applications Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages (down) 621-625  
  Keywords  
  Abstract In this paper we present a method for the segmentation of continuous page streams into multipage documents and the simultaneous classification of the resulting documents. We first present an approach to combine the multiple pages of a document into a single feature vector that represents the whole document. Despite its simplicity and low computational cost, the proposed representation yields results comparable to more complex methods in multipage document classification tasks. We then exploit this representation in the context of page stream segmentation. The most plausible segmentation of a page stream into a sequence of multipage documents is obtained by optimizing a statistical model that represents the probability of each segmented multipage document belonging to a particular class. Experimental results are reported on a large sample of real administrative multipage documents.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.056; 602.101 Approved no  
  Call Number Admin @ si @ GRK2013c Serial 2345  
Permanent link to this record
 

 
Author J. Chazalon; Marçal Rusiñol; Jean-Marc Ogier; Josep Llados edit  url
doi  openurl
  Title A Semi-Automatic Groundtruthing Tool for Mobile-Captured Document Segmentation Type Conference Article
  Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages (down) 621-625  
  Keywords  
  Abstract This paper presents a novel way to generate groundtruth data for the evaluation of mobile document capture systems, focusing on the first stage of the image processing pipeline involved: document object detection and segmentation in lowquality preview frames. We introduce and describe a simple, robust and fast technique based on color markers which enables a semi-automated annotation of page corners. We also detail a technique for marker removal. Methods and tools presented in the paper were successfully used to annotate, in few hours, 24889
frames in 150 video files for the smartDOC competition at ICDAR 2015
 
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.084; 600.061; 601.223; 600.077 Approved no  
  Call Number Admin @ si @ CRO2015b Serial 2685  
Permanent link to this record
 

 
Author Anjan Dutta; Josep Llados; Umapada Pal edit  doi
isbn  openurl
  Title A Bag-of-Paths Based Serialized Subgraph Matching for Symbol Spotting in Line Drawings Type Conference Article
  Year 2011 Publication 5th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume 6669 Issue Pages (down) 620-627  
  Keywords  
  Abstract In this paper we propose an error tolerant subgraph matching algorithm based on bag-of-paths for solving the problem of symbol spotting in line drawings. Bag-of-paths is a factorized representation of graphs where the factorization is done by considering all the acyclic paths between each pair of connected nodes. Similar paths within the whole collection of documents are clustered and organized in a lookup table for efficient indexing. The lookup table contains the index key of each cluster and the corresponding list of locations as a single entry. The mean path of each of the clusters serves as the index key for each table entry. The spotting method is then formulated by a spatial voting scheme to the list of locations of the paths that are decided in terms of search of similar paths that compose the query symbol. Efficient indexing of common substructures helps to reduce the computational burden of usual graph based methods. The proposed method can also be seen as a way to serialize graphs which allows to reduce the complexity of the subgraph isomorphism. We have encoded the paths in terms of both attributed strings and turning functions, and presented a comparative results between them within the symbol spotting framework. Experimentations for matching different shape silhouettes are also reported and the method has been proved to work in noisy environment also.  
  Address Las Palmas de Gran Canaria. Spain  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Berlin Editor Jordi Vitria; Joao Miguel Raposo; Mario Hernandez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-21256-7 Medium  
  Area Expedition Conference IbPRIA  
  Notes DAG Approved no  
  Call Number Admin @ si @ DLP2011a Serial 1738  
Permanent link to this record
 

 
Author Volkmar Frinken; Alicia Fornes; Josep Llados; Jean-Marc Ogier edit   pdf
doi  isbn
openurl 
  Title Bidirectional Language Model for Handwriting Recognition Type Conference Article
  Year 2012 Publication Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshop Abbreviated Journal  
  Volume 7626 Issue Pages (down) 611-619  
  Keywords  
  Abstract In order to improve the results of automatically recognized handwritten text, information about the language is commonly included in the recognition process. A common approach is to represent a text line as a sequence. It is processed in one direction and the language information via n-grams is directly included in the decoding. This approach, however, only uses context on one side to estimate a word’s probability. Therefore, we propose a bidirectional recognition in this paper, using distinct forward and a backward language models. By combining decoding hypotheses from both directions, we achieve a significant increase in recognition accuracy for the off-line writer independent handwriting recognition task. Both language models are of the same type and can be estimated on the same corpus. Hence, the increase in recognition accuracy comes without any additional need for training data or language modeling complexity.  
  Address Japan  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-34165-6 Medium  
  Area Expedition Conference SSPR&SPR  
  Notes DAG Approved no  
  Call Number Admin @ si @ FFL2012 Serial 2057  
Permanent link to this record
 

 
Author Marçal Rusiñol; J. Chazalon; Jean-Marc Ogier; Josep Llados edit   pdf
doi  openurl
  Title A Comparative Study of Local Detectors and Descriptors for Mobile Document Classification Type Conference Article
  Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages (down) 596-600  
  Keywords  
  Abstract In this paper we conduct a comparative study of local key-point detectors and local descriptors for the specific task of mobile document classification. A classification architecture based on direct matching of local descriptors is used as baseline for the comparative study. A set of four different key-point
detectors and four different local descriptors are tested in all the possible combinations. The experiments are conducted in a database consisting of 30 model documents acquired on 6 different backgrounds, totaling more than 36.000 test images.
 
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.084; 600.61; 601.223; 600.077 Approved no  
  Call Number Admin @ si @ RCO2015 Serial 2684  
Permanent link to this record
 

 
Author Anjan Dutta; Josep Llados; Horst Bunke; Umapada Pal edit   pdf
url  openurl
  Title Product graph-based higher order contextual similarities for inexact subgraph matching Type Journal Article
  Year 2018 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 76 Issue Pages (down) 596-611  
  Keywords  
  Abstract Many algorithms formulate graph matching as an optimization of an objective function of pairwise quantification of nodes and edges of two graphs to be matched. Pairwise measurements usually consider local attributes but disregard contextual information involved in graph structures. We address this issue by proposing contextual similarities between pairs of nodes. This is done by considering the tensor product graph (TPG) of two graphs to be matched, where each node is an ordered pair of nodes of the operand graphs. Contextual similarities between a pair of nodes are computed by accumulating weighted walks (normalized pairwise similarities) terminating at the corresponding paired node in TPG. Once the contextual similarities are obtained, we formulate subgraph matching as a node and edge selection problem in TPG. We use contextual similarities to construct an objective function and optimize it with a linear programming approach. Since random walk formulation through TPG takes into account higher order information, it is not a surprise that we obtain more reliable similarities and better discrimination among the nodes and edges. Experimental results shown on synthetic as well as real benchmarks illustrate that higher order contextual similarities increase discriminating power and allow one to find approximate solutions to the subgraph matching problem.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 602.167; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ DLB2018 Serial 3083  
Permanent link to this record
 

 
Author A.Kesidis; Dimosthenis Karatzas edit  doi
isbn  openurl
  Title Logo and Trademark Recognition Type Book Chapter
  Year 2014 Publication Handbook of Document Image Processing and Recognition Abbreviated Journal  
  Volume D Issue Pages (down) 591-646  
  Keywords Logo recognition; Logo removal; Logo spotting; Trademark registration; Trademark retrieval systems  
  Abstract The importance of logos and trademarks in nowadays society is indisputable, variably seen under a positive light as a valuable service for consumers or a negative one as a catalyst of ever-increasing consumerism. This chapter discusses the technical approaches for enabling machines to work with logos, looking into the latest methodologies for logo detection, localization, representation, recognition, retrieval, and spotting in a variety of media. This analysis is presented in the context of three different applications covering the complete depth and breadth of state of the art techniques. These are trademark retrieval systems, logo recognition in document images, and logo detection and removal in images and videos. This chapter, due to the very nature of logos and trademarks, brings together various facets of document image analysis spanning graphical and textual content, while it links document image analysis to other computer vision domains, especially when it comes to the analysis of real-scene videos and images.  
  Address  
  Corporate Author Thesis  
  Publisher Springer London Place of Publication Editor D. Doermann; K. Tombre  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-85729-858-4 Medium  
  Area Expedition Conference  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ KeK2014 Serial 2425  
Permanent link to this record
 

 
Author Oriol Ramos Terrades; Ernest Valveny edit  doi
openurl 
  Title A new use of the ridgelets transform for describing linear singularities in images Type Journal Article
  Year 2006 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 27 Issue 6 Pages (down) 587–596  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ RaV2006a Serial 635  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: