toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Pau Riba; Anjan Dutta; Josep Llados; Alicia Fornes; Sounak Dey edit   pdf
doi  openurl
  Title Improving Information Retrieval in Multiwriter Scenario by Exploiting the Similarity Graph of Document Terms Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 475-480  
  Keywords document terms; information retrieval; affinity graph; graph of document terms; multiwriter; graph diffusion  
  Abstract Information Retrieval (IR) is the activity of obtaining information resources relevant to a questioned information. It usually retrieves a set of objects ranked according to the relevancy to the needed fact. In document analysis, information retrieval receives a lot of attention in terms of symbol and word spotting. However, through decades the community mostly focused either on printed or on single writer scenario, where the
state-of-the-art results have achieved reasonable performance on the available datasets. Nevertheless, the existing algorithms do not perform accordingly on multiwriter scenario. A graph representing relations between a set of objects is a structure where each node delineates an individual element and the similarity between them is represented as a weight on the connecting edge. In this paper, we explore different analytics of graphs constructed from words or graphical symbols, such as diffusion, shortest path, etc. to improve the performance of information retrieval methods in multiwriter scenario
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.097; 601.302; 600.121 Approved no  
  Call Number Admin @ si @ RDL2017a Serial 3053  
Permanent link to this record
 

 
Author Anjan Dutta; Pau Riba; Josep Llados; Alicia Fornes edit   pdf
doi  openurl
  Title Pyramidal Stochastic Graphlet Embedding for Document Pattern Classification Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 33-38  
  Keywords graph embedding; hierarchical graph representation; graph clustering; stochastic graphlet embedding; graph classification  
  Abstract Document pattern classification methods using graphs have received a lot of attention because of its robust representation paradigm and rich theoretical background. However, the way of preserving and the process for delineating documents with graphs introduce noise in the rendition of underlying data, which creates instability in the graph representation. To deal with such unreliability in representation, in this paper, we propose Pyramidal Stochastic Graphlet Embedding (PSGE).
Given a graph representing a document pattern, our method first computes a graph pyramid by successively reducing the base graph. Once the graph pyramid is computed, we apply Stochastic Graphlet Embedding (SGE) for each level of the pyramid and combine their embedded representation to obtain a global delineation of the original graph. The consideration of pyramid of graphs rather than just a base graph extends the representational power of the graph embedding, which reduces the instability caused due to noise and distortion. When plugged with support
vector machine, our proposed PSGE has outperformed the state-of-the-art results in recognition of handwritten words as well as graphical symbols
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.097; 601.302; 600.121 Approved no  
  Call Number Admin @ si @ DRL2017 Serial 3054  
Permanent link to this record
 

 
Author Juan Ignacio Toledo; Sounak Dey; Alicia Fornes; Josep Llados edit   pdf
doi  openurl
  Title Handwriting Recognition by Attribute embedding and Recurrent Neural Networks Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1038-1043  
  Keywords  
  Abstract Handwriting recognition consists in obtaining the transcription of a text image. Recent word spotting methods based on attribute embedding have shown good performance when recognizing words. However, they are holistic methods in the sense that they recognize the word as a whole (i.e. they find the closest word in the lexicon to the word image). Consequently,
these kinds of approaches are not able to deal with out of vocabulary words, which are common in historical manuscripts. Also, they cannot be extended to recognize text lines. In order to address these issues, in this paper we propose a handwriting recognition method that adapts the attribute embedding to sequence learning. Concretely, the method learns the attribute embedding of patches of word images with a convolutional neural network. Then, these embeddings are presented as a sequence to a recurrent neural network that produces the transcription. We obtain promising results even without the use of any kind of dictionary or language model
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.097; 601.225; 600.121 Approved no  
  Call Number Admin @ si @ TDF2017 Serial 3055  
Permanent link to this record
 

 
Author Arnau Baro; Pau Riba; Jorge Calvo-Zaragoza; Alicia Fornes edit   pdf
doi  openurl
  Title Optical Music Recognition by Recurrent Neural Networks Type Conference Article
  Year 2017 Publication 14th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages 25-26  
  Keywords Optical Music Recognition; Recurrent Neural Network; Long Short-Term Memory  
  Abstract Optical Music Recognition is the task of transcribing a music score into a machine readable format. Many music scores are written in a single staff, and therefore, they could be treated as a sequence. Therefore, this work explores the use of Long Short-Term Memory (LSTM) Recurrent Neural Networks for reading the music score sequentially, where the LSTM helps in keeping the context. For training, we have used a synthetic dataset of more than 40000 images, labeled at primitive level  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.097; 601.302; 600.121 Approved no  
  Call Number Admin @ si @ BRC2017 Serial 3056  
Permanent link to this record
 

 
Author Sounak Dey; Anjan Dutta; Josep Llados; Alicia Fornes; Umapada Pal edit   pdf
doi  openurl
  Title Shallow Neural Network Model for Hand-drawn Symbol Recognition in Multi-Writer Scenario Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 31-32  
  Keywords  
  Abstract One of the main challenges in hand drawn symbol recognition is the variability among symbols because of the different writer styles. In this paper, we present and discuss some results recognizing hand-drawn symbols with a shallow neural network. A neural network model inspired from the LeNet architecture has been used to achieve state-of-the-art results with
very less training data, which is very unlikely to the data hungry deep neural network. From the results, it has become evident that the neural network architectures can efficiently describe and recognize hand drawn symbols from different writers and can model the inter author aberration
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ DDL2017 Serial 3057  
Permanent link to this record
 

 
Author Pau Riba; Anjan Dutta; Josep Llados; Alicia Fornes edit   pdf
doi  openurl
  Title Graph-based deep learning for graphics classification Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 29-30  
  Keywords  
  Abstract Graph-based representations are a common way to deal with graphics recognition problems. However, previous works were mainly focused on developing learning-free techniques. The success of deep learning frameworks have proved that learning is a powerful tool to solve many problems, however it is not straightforward to extend these methodologies to non euclidean data such as graphs. On the other hand, graphs are a good representational structure for graphical entities. In this work, we present some deep learning techniques that have been proposed in the literature for graph-based representations and
we show how they can be used in graphics recognition problems
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.097; 601.302; 600.121 Approved no  
  Call Number Admin @ si @ RDL2017b Serial 3058  
Permanent link to this record
 

 
Author Adria Rico; Alicia Fornes edit   pdf
doi  openurl
  Title Camera-based Optical Music Recognition using a Convolutional Neural Network Type Conference Article
  Year 2017 Publication 12th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages 27-28  
  Keywords optical music recognition; document analysis; convolutional neural network; deep learning  
  Abstract Optical Music Recognition (OMR) consists in recognizing images of music scores. Contrary to expectation, the current OMR systems usually fail when recognizing images of scores captured by digital cameras and smartphones. In this work, we propose a camera-based OMR system based on Convolutional Neural Networks, showing promising preliminary results  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG;600.097; 600.121 Approved no  
  Call Number Admin @ si @ RiF2017 Serial 3059  
Permanent link to this record
 

 
Author Oriol Vicente; Alicia Fornes; Ramon Valdes edit   pdf
isbn  openurl
  Title La Xarxa d Humanitats Digitals de la UABCie: una estructura inteligente para la investigación y la transferencia en Humanidades Type Conference Article
  Year 2017 Publication 3rd Congreso Internacional de Humanidades Digitales Hispánicas. Sociedad Internacional Abbreviated Journal  
  Volume Issue Pages 281-383  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-697-5692-8 Medium  
  Area Expedition Conference HDH  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ VFV2017 Serial 3060  
Permanent link to this record
 

 
Author Alicia Fornes; Beata Megyesi; Joan Mas edit   pdf
openurl 
  Title Transcription of Encoded Manuscripts with Image Processing Techniques Type Conference Article
  Year 2017 Publication Digital Humanities Conference Abbreviated Journal  
  Volume Issue Pages 441-443  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DH  
  Notes DAG; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ FMM2017 Serial 3061  
Permanent link to this record
 

 
Author Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate; Marçal Rusiñol; Francesc J. Ferri edit   pdf
doi  openurl
  Title Fast Kernel Generalized Discriminative Common Vectors for Feature Extraction Type Journal Article
  Year 2018 Publication Journal of Mathematical Imaging and Vision Abbreviated Journal JMIV  
  Volume 60 Issue 4 Pages 512-524  
  Keywords  
  Abstract This paper presents a supervised subspace learning method called Kernel Generalized Discriminative Common Vectors (KGDCV), as a novel extension of the known Discriminative Common Vectors method with Kernels. Our method combines the advantages of kernel methods to model complex data and solve nonlinear
problems with moderate computational complexity, with the better generalization properties of generalized approaches for large dimensional data. These attractive combination makes KGDCV specially suited for feature extraction and classification in computer vision, image processing and pattern recognition applications. Two different approaches to this generalization are proposed, a first one based on the kernel trick (KT) and a second one based on the nonlinear projection trick (NPT) for even higher efficiency. Both methodologies
have been validated on four different image datasets containing faces, objects and handwritten digits, and compared against well known non-linear state-of-art methods. Results show better discriminant properties than other generalized approaches both linear or kernel. In addition, the KGDCV-NPT approach presents a considerable computational gain, without compromising the accuracy of the model.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.086; 600.130; 600.121; 600.118; 600.129;IAM Approved no  
  Call Number Admin @ si @ DMH2018a Serial 3062  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: