toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Christophe Rigaud; Dimosthenis Karatzas; Jean-Christophe Burie; Jean-Marc Ogier edit  openurl
  Title Speech balloon contour classification in comics Type Conference Article
  Year 2013 Publication 10th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Comic books digitization combined with subsequent comic book understanding create a variety of new applications, including mobile reading and data mining. Document understanding in this domain is challenging as comics are semi-structured documents, combining semantically important graphical and textual parts. In this work we detail a novel approach for classifying speech balloon in scanned comics book pages based on their contour time series.  
  Address Bethlehem; PA; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) GREC  
  Notes DAG; 600.056 Approved no  
  Call Number Admin @ si @ RKB2013 Serial 2429  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; David Fernandez; Alicia Fornes; Ernest Valveny; Gemma Sanchez; Josep Llados edit  openurl
  Title Runlength Histogram Image Signature for Perceptual Retrieval of Architectural Floor Plans Type Conference Article
  Year 2013 Publication 10th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Bethlehem; PA; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) GREC  
  Notes DAG; 600.045; 600.061; 600.056 Approved no  
  Call Number Admin @ si @ HFF2013b Serial 2695  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Ernest Valveny; Gemma Sanchez edit  openurl
  Title Unsupervised and Notation-Independent Wall Segmentation in Floor Plans Using a Combination of Statistical and Structural Strategies Type Conference Article
  Year 2013 Publication 10th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Bethlehem; PA; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) GREC  
  Notes DAG Approved no  
  Call Number Admin @ si @ HVS2013b Serial 2696  
Permanent link to this record
 

 
Author Pau Riba; Alicia Fornes; Josep Llados edit  isbn
openurl 
  Title Towards the Alignment of Handwritten Music Scores Type Conference Article
  Year 2015 Publication 11th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract It is very common to find different versions of the same music work in archives of Opera Theaters. These differences correspond to modifications and annotations from the musicians. From the musicologist point of view, these variations are very interesting and deserve study. This paper explores the alignment of music scores as a tool for automatically detecting the passages that contain such differences. Given the difficulties in the recognition of handwritten music scores, our goal is to align the music scores and at the same time, avoid the recognition of music elements as much as possible. After removing the staff lines, braces and ties, the bar lines are detected. Then, the bar units are described as a whole using the Blurred Shape Model. The bar units alignment is performed by using Dynamic Time Warping. The analysis of the alignment path is used to detect the variations in the music scores. The method has been evaluated on a subset of the CVC-MUSCIMA dataset, showing encouraging results.  
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor Bart Lamiroy; Rafael Dueire Lins  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-319-52158-9 Medium  
  Area Expedition Conference (up) GREC  
  Notes DAG Approved no  
  Call Number Admin @ si @ Serial 2874  
Permanent link to this record
 

 
Author Hana Jarraya; Muhammad Muzzamil Luqman; Jean-Yves Ramel edit  doi
openurl 
  Title Improving Fuzzy Multilevel Graph Embedding Technique by Employing Topological Node Features: An Application to Graphics Recognition Type Book Chapter
  Year 2017 Publication Graphics Recognition. Current Trends and Challenges Abbreviated Journal  
  Volume 9657 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor B. Lamiroy; R Dueire Lins  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) GREC  
  Notes DAG; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ JLR2017 Serial 2928  
Permanent link to this record
 

 
Author Hana Jarraya; Oriol Ramos Terrades; Josep Llados edit  doi
openurl 
  Title Learning structural loss parameters on graph embedding applied on symbolic graphs Type Conference Article
  Year 2017 Publication 12th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract We propose an amelioration of proposed Graph Embedding (GEM) method in previous work that takes advantages of structural pattern representation and the structured distortion. it models an Attributed Graph (AG) as a Probabilistic Graphical Model (PGM). Then, it learns the parameters of this PGM presented by a vector, as new signature of AG in a lower dimensional vectorial space. We focus to adapt the structured learning algorithm via 1_slack formulation with a suitable risk function, called Graph Edit Distance (GED). It defines the dissimilarity of the ground truth and predicted graph labels. It determines by the error tolerant graph matching using bipartite graph matching algorithm. We apply Structured Support Vector Machines (SSVM) to process classification task. During our experiments, we got our results on the GREC dataset.  
  Address Kyoto; Japan; November 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) GREC  
  Notes DAG; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ JRL2017b Serial 3073  
Permanent link to this record
 

 
Author Adria Rico; Alicia Fornes edit   pdf
doi  openurl
  Title Camera-based Optical Music Recognition using a Convolutional Neural Network Type Conference Article
  Year 2017 Publication 12th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages 27-28  
  Keywords optical music recognition; document analysis; convolutional neural network; deep learning  
  Abstract Optical Music Recognition (OMR) consists in recognizing images of music scores. Contrary to expectation, the current OMR systems usually fail when recognizing images of scores captured by digital cameras and smartphones. In this work, we propose a camera-based OMR system based on Convolutional Neural Networks, showing promising preliminary results  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) GREC  
  Notes DAG;600.097; 600.121 Approved no  
  Call Number Admin @ si @ RiF2017 Serial 3059  
Permanent link to this record
 

 
Author Arnau Baro; Pau Riba; Jorge Calvo-Zaragoza; Alicia Fornes edit   pdf
doi  isbn
openurl 
  Title Optical Music Recognition by Long Short-Term Memory Networks Type Book Chapter
  Year 2018 Publication Graphics Recognition. Current Trends and Evolutions Abbreviated Journal  
  Volume 11009 Issue Pages 81-95  
  Keywords Optical Music Recognition; Recurrent Neural Network; Long ShortTerm Memory  
  Abstract Optical Music Recognition refers to the task of transcribing the image of a music score into a machine-readable format. Many music scores are written in a single staff, and therefore, they could be treated as a sequence. Therefore, this work explores the use of Long Short-Term Memory (LSTM) Recurrent Neural Networks for reading the music score sequentially, where the LSTM helps in keeping the context. For training, we have used a synthetic dataset of more than 40000 images, labeled at primitive level. The experimental results are promising, showing the benefits of our approach.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor A. Fornes, B. Lamiroy  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-030-02283-9 Medium  
  Area Expedition Conference (up) GREC  
  Notes DAG; 600.097; 601.302; 601.330; 600.121 Approved no  
  Call Number Admin @ si @ BRC2018 Serial 3227  
Permanent link to this record
 

 
Author Asma Bensalah; Pau Riba; Alicia Fornes; Josep Llados edit   pdf
openurl 
  Title Shoot less and Sketch more: An Efficient Sketch Classification via Joining Graph Neural Networks and Few-shot Learning Type Conference Article
  Year 2019 Publication 13th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages 80-85  
  Keywords Sketch classification; Convolutional Neural Network; Graph Neural Network; Few-shot learning  
  Abstract With the emergence of the touchpad devices and drawing tablets, a new era of sketching started afresh. However, the recognition of sketches is still a tough task due to the variability of the drawing styles. Moreover, in some application scenarios there is few labelled data available for training,
which imposes a limitation for deep learning architectures. In addition, in many cases there is a need to generate models able to adapt to new classes. In order to cope with these limitations, we propose a method based on few-shot learning and graph neural networks for classifying sketches aiming for an efficient neural model. We test our approach with several databases of
sketches, showing promising results.
 
  Address Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) GREC  
  Notes DAG; 600.140; 601.302; 600.121 Approved no  
  Call Number Admin @ si @ BRF2019 Serial 3354  
Permanent link to this record
 

 
Author Pau Torras; Mohamed Ali Souibgui; Jialuo Chen; Alicia Fornes edit  url
openurl 
  Title A Transcription Is All You Need: Learning to Align through Attention Type Conference Article
  Year 2021 Publication 14th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume 12916 Issue Pages 141–146  
  Keywords  
  Abstract Historical ciphered manuscripts are a type of document where graphical symbols are used to encrypt their content instead of regular text. Nowadays, expert transcriptions can be found in libraries alongside the corresponding manuscript images. However, those transcriptions are not aligned, so these are barely usable for training deep learning-based recognition methods. To solve this issue, we propose a method to align each symbol in the transcript of an image with its visual representation by using an attention-based Sequence to Sequence (Seq2Seq) model. The core idea is that, by learning to recognise symbols sequence within a cipher line image, the model also identifies their position implicitly through an attention mechanism. Thus, the resulting symbol segmentation can be later used for training algorithms. The experimental evaluation shows that this method is promising, especially taking into account the small size of the cipher dataset.  
  Address Virtual; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) GREC  
  Notes DAG; 602.230; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ TSC2021 Serial 3619  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: