|
Records |
Links |
|
Author |
Hongxing Gao; Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados |
|
|
Title |
Embedding Document Structure to Bag-of-Words through Pair-wise Stable Key-regions |
Type |
Conference Article |
|
Year |
2014 |
Publication |
22nd International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
2903 - 2908 |
|
|
Keywords |
|
|
|
Abstract |
Since the document structure carries valuable discriminative information, plenty of efforts have been made for extracting and understanding document structure among which layout analysis approaches are the most commonly used. In this paper, Distance Transform based MSER (DTMSER) is employed to efficiently extract the document structure as a dendrogram of key-regions which roughly correspond to structural elements such as characters, words and paragraphs. Inspired by the Bag
of Words (BoW) framework, we propose an efficient method for structural document matching by representing the document image as a histogram of key-region pairs encoding structural relationships.
Applied to the scenario of document image retrieval, experimental results demonstrate a remarkable improvement when comparing the proposed method with typical BoW and pyramidal BoW methods. |
|
|
Address |
Stockholm; Sweden; August 2014 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG; 600.056; 600.061; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GRK2014b |
Serial |
2497 |
|
Permanent link to this record |
|
|
|
|
Author |
Hongxing Gao; Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados |
|
|
Title |
Fast Structural Matching for Document Image Retrieval through Spatial Databases |
Type |
Conference Article |
|
Year |
2014 |
Publication |
Document Recognition and Retrieval XXI |
Abbreviated Journal |
|
|
|
Volume |
9021 |
Issue |
|
Pages |
|
|
|
Keywords |
Document image retrieval; distance transform; MSER; spatial database |
|
|
Abstract |
The structure of document images plays a signicant role in document analysis thus considerable eorts have been made towards extracting and understanding document structure, usually in the form of layout analysis approaches. In this paper, we rst employ Distance Transform based MSER (DTMSER) to eciently extract stable document structural elements in terms of a dendrogram of key-regions. Then a fast structural matching method is proposed to query the structure of document (dendrogram) based on a spatial database which facilitates the formulation of advanced spatial queries. The experiments demonstrate a signicant improvement in a document retrieval scenario when compared to the use of typical Bag of Words (BoW) and pyramidal BoW descriptors. |
|
|
Address |
Amsterdam; September 2014 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
SPIE-DRR |
|
|
Notes |
DAG; 600.056; 600.061; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GRK2014a |
Serial |
2496 |
|
Permanent link to this record |
|
|
|
|
Author |
Albert Gordo; Marçal Rusiñol; Dimosthenis Karatzas; Andrew Bagdanov |
|
|
Title |
Document Classification and Page Stream Segmentation for Digital Mailroom Applications |
Type |
Conference Article |
|
Year |
2013 |
Publication |
12th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
621-625 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we present a method for the segmentation of continuous page streams into multipage documents and the simultaneous classification of the resulting documents. We first present an approach to combine the multiple pages of a document into a single feature vector that represents the whole document. Despite its simplicity and low computational cost, the proposed representation yields results comparable to more complex methods in multipage document classification tasks. We then exploit this representation in the context of page stream segmentation. The most plausible segmentation of a page stream into a sequence of multipage documents is obtained by optimizing a statistical model that represents the probability of each segmented multipage document belonging to a particular class. Experimental results are reported on a large sample of real administrative multipage documents. |
|
|
Address |
Washington; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.056; 602.101 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GRK2013c |
Serial |
2345 |
|
Permanent link to this record |
|
|
|
|
Author |
Hongxing Gao; Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados; Tomokazu Sato; Masakazu Iwamura; Koichi Kise |
|
|
Title |
Key-region detection for document images -applications to administrative document retrieval |
Type |
Conference Article |
|
Year |
2013 |
Publication |
12th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
230-234 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we argue that a key-region detector designed to take into account the special characteristics of document images can result in the detection of less and more meaningful key-regions. We propose a fast key-region detector able to capture aspects of the structural information of the document, and demonstrate its efficiency by comparing against standard detectors in an administrative document retrieval scenario. We show that using the proposed detector results to a smaller number of detected key-regions and higher performance without any drop in speed compared to standard state of the art detectors. |
|
|
Address |
Washington; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.056; 600.045 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GRK2013b |
Serial |
2293 |
|
Permanent link to this record |
|
|
|
|
Author |
Hongxing Gao; Marçal Rusiñol; Dimosthenis Karatzas; Apostolos Antonacopoulos; Josep Llados |
|
|
Title |
An interactive appearance-based document retrieval system for historical newspapers |
Type |
Conference Article |
|
Year |
2013 |
Publication |
Proceedings of the International Conference on Computer Vision Theory and Applications |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
84-87 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we present a retrieval-based application aimed at assisting a user to semi-automatically segment an incoming flow of historical newspaper images by automatically detecting a particular type of pages based on their appearance. A visual descriptor is used to assess page similarity while a relevance feedback process allow refining the results iteratively. The application is tested on a large dataset of digitised historic newspapers. |
|
|
Address |
Barcelona; February 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
VISAPP |
|
|
Notes |
DAG; 600.056; 600.045; 605.203 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GRK2013a |
Serial |
2290 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Gomez; Marçal Rusiñol; Ali Furkan Biten; Dimosthenis Karatzas |
|
|
Title |
Subtitulació automàtica d'imatges. Estat de l'art i limitacions en el context arxivístic |
Type |
Conference Article |
|
Year |
2018 |
Publication |
Jornades Imatge i Recerca |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
JIR |
|
|
Notes |
DAG; 600.084; 600.135; 601.338; 600.121; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GRB2018 |
Serial |
3173 |
|
Permanent link to this record |
|
|
|
|
Author |
Clement Guerin; Christophe Rigaud; Karell Bertet; Jean-Christophe Burie; Arnaud Revel ; Jean-Marc Ogier |
|
|
Title |
Réduction de l’espace de recherche pour les personnages de bandes dessinées |
Type |
Conference Article |
|
Year |
2014 |
Publication |
19th National Congress Reconnaissance de Formes et l'Intelligence Artificielle |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
contextual search; document analysis; comics characters |
|
|
Abstract |
Les bandes dessinées représentent un patrimoine culturel important dans de nombreux pays et leur numérisation massive offre la possibilité d'effectuer des recherches dans le contenu des images. À ce jour, ce sont principalement les structures des pages et leurs contenus textuels qui ont été étudiés, peu de travaux portent sur le contenu graphique. Nous proposons de nous appuyer sur des éléments déjà étudiés tels que la position des cases et des bulles, pour réduire l'espace de recherche et localiser les personnages en fonction de la queue des bulles. L'évaluation de nos différentes contributions à partir de la base eBDtheque montre un taux de détection des queues de bulle de 81.2%, de localisation des personnages allant jusqu'à 85% et un gain d'espace de recherche de plus de 50%. |
|
|
Address |
Rouen; Francia; July 2014 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
RFIA |
|
|
Notes |
DAG; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GRB2014 |
Serial |
2480 |
|
Permanent link to this record |
|
|
|
|
Author |
Albert Gordo; Florent Perronnin; Ernest Valveny |
|
|
Title |
Large-scale document image retrieval and classification with runlength histograms and binary embeddings |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
46 |
Issue |
7 |
Pages |
1898-1905 |
|
|
Keywords |
visual document descriptor; compression; large-scale; retrieval; classification |
|
|
Abstract |
We present a new document image descriptor based on multi-scale runlength
histograms. This descriptor does not rely on layout analysis and can be
computed efficiently. We show how this descriptor can achieve state-of-theart
results on two very different public datasets in classification and retrieval
tasks. Moreover, we show how we can compress and binarize these descriptors
to make them suitable for large-scale applications. We can achieve state-ofthe-
art results in classification using binary descriptors of as few as 16 to 64
bits. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.042; 600.045; 605.203 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GPV2013 |
Serial |
2306 |
|
Permanent link to this record |
|
|
|
|
Author |
Albert Gordo; Florent Perronnin; Ernest Valveny |
|
|
Title |
Document classification using multiple views |
Type |
Conference Article |
|
Year |
2012 |
Publication |
10th IAPR International Workshop on Document Analysis Systems |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
33-37 |
|
|
Keywords |
|
|
|
Abstract |
The combination of multiple features or views when representing documents or other kinds of objects usually leads to improved results in classification (and retrieval) tasks. Most systems assume that those views will be available both at training and test time. However, some views may be too `expensive' to be available at test time. In this paper, we consider the use of Canonical Correlation Analysis to leverage `expensive' views that are available only at training time. Experimental results show that this information may significantly improve the results in a classification task. |
|
|
Address |
Australia |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
IEEE Computer Society Washington |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-0-7695-4661-2 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DAS |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ GPV2012 |
Serial |
2049 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Gomez; Y. Patel; Marçal Rusiñol; C.V. Jawahar; Dimosthenis Karatzas |
|
|
Title |
Self‐supervised learning of visual features through embedding images into text topic spaces |
Type |
Conference Article |
|
Year |
2017 |
Publication |
30th IEEE Conference on Computer Vision and Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
End-to-end training from scratch of current deep architectures for new computer vision problems would require Imagenet-scale datasets, and this is not always possible. In this paper we present a method that is able to take advantage of freely available multi-modal content to train computer vision algorithms without human supervision. We put forward the idea of performing self-supervised learning of visual features by mining a large scale corpus of multi-modal (text and image) documents. We show that discriminative visual features can be learnt efficiently by training a CNN to predict the semantic context in which a particular image is more probable to appear as an illustration. For this we leverage the hidden semantic structures discovered in the text corpus with a well-known topic modeling technique. Our experiments demonstrate state of the art performance in image classification, object detection, and multi-modal retrieval compared to recent self-supervised or natural-supervised approaches. |
|
|
Address |
Honolulu; Hawaii; July 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CVPR |
|
|
Notes |
DAG; 600.084; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GPR2017 |
Serial |
2889 |
|
Permanent link to this record |