|
Records |
Links |
|
Author  |
Dena Bazazian; Dimosthenis Karatzas; Andrew Bagdanov |

|
|
Title |
Soft-PHOC Descriptor for End-to-End Word Spotting in Egocentric Scene Images |
Type |
Conference Article |
|
Year |
2018 |
Publication |
International Workshop on Egocentric Perception, Interaction and Computing at ECCV |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Word spotting in natural scene images has many applications in scene understanding and visual assistance. We propose Soft-PHOC, an intermediate representation of images based on character probability maps. Our representation extends the concept of the Pyramidal Histogram Of Characters (PHOC) by exploiting Fully Convolutional Networks to derive a pixel-wise mapping of the character distribution within candidate word regions. We show how to use our descriptors for word spotting tasks in egocentric camera streams through an efficient text line proposal algorithm. This is based on the Hough Transform over character attribute maps followed by scoring using Dynamic Time Warping (DTW). We evaluate our results on ICDAR 2015 Challenge 4 dataset of incidental scene text captured by an egocentric camera. |
|
|
Address |
Munich; Alemanya; September 2018 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ECCVW |
|
|
Notes |
DAG; 600.129; 600.121; |
Approved |
no |
|
|
Call Number |
Admin @ si @ BKB2018b |
Serial |
3174 |
|
Permanent link to this record |
|
|
|
|
Author  |
Dena Bazazian; Dimosthenis Karatzas; Andrew Bagdanov |


|
|
Title |
Word Spotting in Scene Images based on Character Recognition |
Type |
Conference Article |
|
Year |
2018 |
Publication |
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1872-1874 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we address the problem of unconstrained Word Spotting in scene images. We train a Fully Convolutional Network to produce heatmaps of all the character classes. Then, we employ the Text Proposals approach and, via a rectangle classifier, detect the most likely rectangle for each query word based on the character attribute maps. We evaluate the proposed method on ICDAR2015 and show that it is capable of identifying and recognizing query words in natural scene images. |
|
|
Address |
Salt Lake City; USA; June 2018 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CVPRW |
|
|
Notes |
DAG; 600.129; 600.121 |
Approved |
no |
|
|
Call Number |
BKB2018a |
Serial |
3179 |
|
Permanent link to this record |
|
|
|
|
Author  |
Dena Bazazian; Raul Gomez; Anguelos Nicolaou; Lluis Gomez; Dimosthenis Karatzas; Andrew Bagdanov |

|
|
Title |
Improving Text Proposals for Scene Images with Fully Convolutional Networks |
Type |
Conference Article |
|
Year |
2016 |
Publication |
23rd International Conference on Pattern Recognition Workshops |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Text Proposals have emerged as a class-dependent version of object proposals – efficient approaches to reduce the search space of possible text object locations in an image. Combined with strong word classifiers, text proposals currently yield top state of the art results in end-to-end scene text
recognition. In this paper we propose an improvement over the original Text Proposals algorithm of [1], combining it with Fully Convolutional Networks to improve the ranking of proposals. Results on the ICDAR RRC and the COCO-text datasets show superior performance over current state-of-the-art. |
|
|
Address |
Cancun; Mexico; December 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPRW |
|
|
Notes |
DAG; LAMP; 600.084 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BGN2016 |
Serial |
2823 |
|
Permanent link to this record |
|
|
|
|
Author  |
Dena Bazazian; Raul Gomez; Anguelos Nicolaou; Lluis Gomez; Dimosthenis Karatzas; Andrew Bagdanov |


|
|
Title |
Fast: Facilitated and accurate scene text proposals through fcn guided pruning |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
119 |
Issue |
|
Pages |
112-120 |
|
|
Keywords |
|
|
|
Abstract |
Class-specific text proposal algorithms can efficiently reduce the search space for possible text object locations in an image. In this paper we combine the Text Proposals algorithm with Fully Convolutional Networks to efficiently reduce the number of proposals while maintaining the same recall level and thus gaining a significant speed up. Our experiments demonstrate that such text proposal approaches yield significantly higher recall rates than state-of-the-art text localization techniques, while also producing better-quality localizations. Our results on the ICDAR 2015 Robust Reading Competition (Challenge 4) and the COCO-text datasets show that, when combined with strong word classifiers, this recall margin leads to state-of-the-art results in end-to-end scene text recognition. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.084; 600.121; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BGN2019 |
Serial |
3342 |
|
Permanent link to this record |
|
|
|
|
Author  |
Dimosthenis Karatzas |

|
|
Title |
Detecting Gradients in Text Images Using the Hough Transform |
Type |
Conference Article |
|
Year |
2008 |
Publication |
Proceedings of the 8th International Workshop on Document Analysis Systems, |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
245–252 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Nara (Japan) |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DAS |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ Kar2008 |
Serial |
1062 |
|
Permanent link to this record |
|
|
|
|
Author  |
Dimosthenis Karatzas; Faisal Shafait; Seiichi Uchida; Masakazu Iwamura; Lluis Gomez; Sergi Robles; Joan Mas; David Fernandez; Jon Almazan; Lluis Pere de las Heras |


|
|
Title |
ICDAR 2013 Robust Reading Competition |
Type |
Conference Article |
|
Year |
2013 |
Publication |
12th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1484-1493 |
|
|
Keywords |
|
|
|
Abstract |
This report presents the final results of the ICDAR 2013 Robust Reading Competition. The competition is structured in three Challenges addressing text extraction in different application domains, namely born-digital images, real scene images and real-scene videos. The Challenges are organised around specific tasks covering text localisation, text segmentation and word recognition. The competition took place in the first quarter of 2013, and received a total of 42 submissions over the different tasks offered. This report describes the datasets and ground truth specification, details the performance evaluation protocols used and presents the final results along with a brief summary of the participating methods. |
|
|
Address |
Washington; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.056 |
Approved |
no |
|
|
Call Number |
Admin @ si @ KSU2013 |
Serial |
2318 |
|
Permanent link to this record |
|
|
|
|
Author  |
Dimosthenis Karatzas; Lluis Gomez; Anguelos Nicolaou; Suman Ghosh; Andrew Bagdanov; Masakazu Iwamura; J. Matas; L. Neumann; V. Ramaseshan; S. Lu ; Faisal Shafait; Seiichi Uchida; Ernest Valveny |

|
|
Title |
ICDAR 2015 Competition on Robust Reading |
Type |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1156-1160 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.077; 600.084 |
Approved |
no |
|
|
Call Number |
Admin @ si @ KGN2015 |
Serial |
2690 |
|
Permanent link to this record |
|
|
|
|
Author  |
Dimosthenis Karatzas; Lluis Gomez; Marçal Rusiñol |

|
|
Title |
The Robust Reading Competition Annotation and Evaluation Platform |
Type |
Conference Article |
|
Year |
2017 |
Publication |
1st International Workshop on Open Services and Tools for Document Analysis |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
The ICDAR Robust Reading Competition (RRC), initiated in 2003 and re-established in 2011, has become the defacto evaluation standard for the international community. Concurrent with its second incarnation in 2011, a continuous effort started to develop an online framework to facilitate the hosting and management of competitions. This short paper briefly outlines the Robust Reading Competition Annotation and Evaluation Platform, the backbone of the Robust Reading Competition, comprising a collection of tools and processes that aim to simplify the management and annotation
of data, and to provide online and offline performance evaluation and analysis services |
|
|
Address |
Kyoto; Japan; November 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR-OST |
|
|
Notes |
DAG; 600.084; 600.121; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ KGR2017 |
Serial |
3063 |
|
Permanent link to this record |
|
|
|
|
Author  |
Dimosthenis Karatzas; Lluis Gomez; Marçal Rusiñol; Anguelos Nicolaou |


|
|
Title |
The Robust Reading Competition Annotation and Evaluation Platform |
Type |
Conference Article |
|
Year |
2018 |
Publication |
13th IAPR International Workshop on Document Analysis Systems |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
61-66 |
|
|
Keywords |
|
|
|
Abstract |
The ICDAR Robust Reading Competition (RRC), initiated in 2003 and reestablished in 2011, has become the defacto evaluation standard for the international community. Concurrent with its second incarnation in 2011, a continuous
effort started to develop an online framework to facilitate the hosting and management of competitions. This short paper briefly outlines the Robust Reading Competition Annotation and Evaluation Platform, the backbone of the
Robust Reading Competition, comprising a collection of tools and processes that aim to simplify the management and annotation of data, and to provide online and offline performance evaluation and analysis services. |
|
|
Address |
Viena; Austria; April 2018 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DAS |
|
|
Notes |
DAG; 600.084; 600.121 |
Approved |
no |
|
|
Call Number |
KGR2018 |
Serial |
3103 |
|
Permanent link to this record |
|
|
|
|
Author  |
Dimosthenis Karatzas; Marçal Rusiñol; Coen Antens; Miquel Ferrer |

|
|
Title |
Segmentation Robust to the Vignette Effect for Machine Vision Systems |
Type |
Conference Article |
|
Year |
2008 |
Publication |
19th International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
The vignette effect (radial fall-off) is commonly encountered in images obtained through certain image acquisition setups and can seriously hinder automatic analysis processes. In this paper we present a fast and efficient method for dealing with vignetting in the context of object segmentation in an existing industrial inspection setup. The vignette effect is modelled here as a circular, non-linear gradient. The method estimates the gradient parameters and employs them to perform segmentation. Segmentation results on a variety of images indicate that the presented method is able to successfully tackle the vignette effect. |
|
|
Address |
Tampa, USA |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ KRA2008 |
Serial |
1065 |
|
Permanent link to this record |