|
Records |
Links |
|
Author  |
Ruben Tito; Dimosthenis Karatzas; Ernest Valveny |

|
|
Title |
Hierarchical multimodal transformers for Multipage DocVQA |
Type |
Miscellaneous |
|
Year |
2023 |
Publication |
|
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ TKV2023 |
Serial |
3836 |
|
Permanent link to this record |
|
|
|
|
Author  |
Robert Benavente; Gemma Sanchez; Ramon Baldrich; Maria Vanrell; Josep Llados |

|
|
Title |
Normalized colour segmentation for human appearance description. |
Type |
Miscellaneous |
|
Year |
2000 |
Publication |
15 th International Conference on Pattern Recognition, 3:637–641. |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Barcelona. |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG;CIC |
Approved |
no |
|
|
Call Number |
CAT @ cat @ BSB2000 |
Serial |
223 |
|
Permanent link to this record |
|
|
|
|
Author  |
Robert Benavente; Ernest Valveny; Jaume Garcia; Agata Lapedriza; Miquel Ferrer; Gemma Sanchez |

|
|
Title |
Una experiencia de adaptacion al EEES de las asignaturas de programacion en Ingenieria Informatica |
Type |
Miscellaneous |
|
Year |
2008 |
Publication |
V Congreso Iberoamericano de Docencia Universitaria, pp. 213–216 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Valencia |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
OR;DAG;CIC;MV |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ BVG2008 |
Serial |
1031 |
|
Permanent link to this record |
|
|
|
|
Author  |
Ricardo Toledo; Ramon Baldrich; Ernest Valveny; Petia Radeva |

|
|
Title |
Enhancing snakes for vessel detection in angiography images. |
Type |
Miscellaneous |
|
Year |
2002 |
Publication |
Proceedings of the Second IASTED International Conference Visualization, Imaging and Image Proceesing VIIP 2002: 139–144. |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;DAG;CIC;ADAS |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ TBV2002 |
Serial |
300 |
|
Permanent link to this record |
|
|
|
|
Author  |
Ricard Coll; Alicia Fornes; Josep Llados |


|
|
Title |
Graphological Analysis of Handwritten Text Documents for Human Resources Recruitment |
Type |
Conference Article |
|
Year |
2009 |
Publication |
10th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1081–1085 |
|
|
Keywords |
|
|
|
Abstract |
The use of graphology in recruitment processes has become a popular tool in many human resources companies. This paper presents a model that links features from handwritten images to a number of personality characteristics used to measure applicant aptitudes for the job in a particular hiring scenario. In particular we propose a model of measuring active personality and leadership of the writer. Graphological features that define such a profile are measured in terms of document and script attributes like layout configuration, letter size, shape, slant and skew angle of lines, etc. After the extraction, data is classified using a neural network. An experimental framework with real samples has been constructed to illustrate the performance of the approach. |
|
|
Address |
Barcelona, Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN |
978-1-4244-4500-4 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ CFL2009 |
Serial |
1221 |
|
Permanent link to this record |
|
|
|
|
Author  |
Raul Gomez; Yahui Liu; Marco de Nadai; Dimosthenis Karatzas; Bruno Lepri; Nicu Sebe |


|
|
Title |
Retrieval Guided Unsupervised Multi-domain Image to Image Translation |
Type |
Conference Article |
|
Year |
2020 |
Publication |
28th ACM International Conference on Multimedia |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Image to image translation aims to learn a mapping that transforms an image from one visual domain to another. Recent works assume that images descriptors can be disentangled into a domain-invariant content representation and a domain-specific style representation. Thus, translation models seek to preserve the content of source images while changing the style to a target visual domain. However, synthesizing new images is extremely challenging especially in multi-domain translations, as the network has to compose content and style to generate reliable and diverse images in multiple domains. In this paper we propose the use of an image retrieval system to assist the image-to-image translation task. First, we train an image-to-image translation model to map images to multiple domains. Then, we train an image retrieval model using real and generated images to find images similar to a query one in content but in a different domain. Finally, we exploit the image retrieval system to fine-tune the image-to-image translation model and generate higher quality images. Our experiments show the effectiveness of the proposed solution and highlight the contribution of the retrieval network, which can benefit from additional unlabeled data and help image-to-image translation models in the presence of scarce data. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ACM |
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GLN2020 |
Serial |
3497 |
|
Permanent link to this record |
|
|
|
|
Author  |
Raul Gomez; Lluis Gomez; Jaume Gibert; Dimosthenis Karatzas |


|
|
Title |
Learning to Learn from Web Data through Deep Semantic Embeddings |
Type |
Conference Article |
|
Year |
2018 |
Publication |
15th European Conference on Computer Vision Workshops |
Abbreviated Journal |
|
|
|
Volume |
11134 |
Issue |
|
Pages |
514-529 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we propose to learn a multimodal image and text embedding from Web and Social Media data, aiming to leverage the semantic knowledge learnt in the text domain and transfer it to a visual model for semantic image retrieval. We demonstrate that the pipeline can learn from images with associated text without supervision and perform a thourough analysis of five different text embeddings in three different benchmarks. We show that the embeddings learnt with Web and Social Media data have competitive performances over supervised methods in the text based image retrieval task, and we clearly outperform state of the art in the MIRFlickr dataset when training in the target data. Further we demonstrate how semantic multimodal image retrieval can be performed using the learnt embeddings, going beyond classical instance-level retrieval problems. Finally, we present a new dataset, InstaCities1M, composed by Instagram images and their associated texts that can be used for fair comparison of image-text embeddings. |
|
|
Address |
Munich; Alemanya; September 2018 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ECCVW |
|
|
Notes |
DAG; 600.129; 601.338; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GGG2018a |
Serial |
3175 |
|
Permanent link to this record |
|
|
|
|
Author  |
Raul Gomez; Lluis Gomez; Jaume Gibert; Dimosthenis Karatzas |


|
|
Title |
Learning from# Barcelona Instagram data what Locals and Tourists post about its Neighbourhoods |
Type |
Conference Article |
|
Year |
2018 |
Publication |
15th European Conference on Computer Vision Workshops |
Abbreviated Journal |
|
|
|
Volume |
11134 |
Issue |
|
Pages |
530-544 |
|
|
Keywords |
|
|
|
Abstract |
Massive tourism is becoming a big problem for some cities, such as Barcelona, due to its concentration in some neighborhoods. In this work we gather Instagram data related to Barcelona consisting on images-captions pairs and, using the text as a supervisory signal, we learn relations between images, words and neighborhoods. Our goal is to learn which visual elements appear in photos when people is posting about each neighborhood. We perform a language separate treatment of the data and show that it can be extrapolated to a tourists and locals separate analysis, and that tourism is reflected in Social Media at a neighborhood level. The presented pipeline allows analyzing the differences between the images that tourists and locals associate to the different neighborhoods. The proposed method, which can be extended to other cities or subjects, proves that Instagram data can be used to train multi-modal (image and text) machine learning models that are useful to analyze publications about a city at a neighborhood level. We publish the collected dataset, InstaBarcelona and the code used in the analysis. |
|
|
Address |
Munich; Alemanya; September 2018 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ECCVW |
|
|
Notes |
DAG; 600.129; 601.338; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GGG2018b |
Serial |
3176 |
|
Permanent link to this record |
|
|
|
|
Author  |
Raul Gomez; Lluis Gomez; Jaume Gibert; Dimosthenis Karatzas |


|
|
Title |
Self-Supervised Learning from Web Data for Multimodal Retrieval |
Type |
Book Chapter |
|
Year |
2019 |
Publication |
Multi-Modal Scene Understanding Book |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
279-306 |
|
|
Keywords |
self-supervised learning; webly supervised learning; text embeddings; multimodal retrieval; multimodal embedding |
|
|
Abstract |
Self-Supervised learning from multimodal image and text data allows deep neural networks to learn powerful features with no need of human annotated data. Web and Social Media platforms provide a virtually unlimited amount of this multimodal data. In this work we propose to exploit this free available data to learn a multimodal image and text embedding, aiming to leverage the semantic knowledge learnt in the text domain and transfer it to a visual model for semantic image retrieval. We demonstrate that the proposed pipeline can learn from images with associated text without supervision and analyze the semantic structure of the learnt joint image and text embeddingspace. Weperformathoroughanalysisandperformancecomparisonoffivedifferentstateof the art text embeddings in three different benchmarks. We show that the embeddings learnt with Web and Social Media data have competitive performances over supervised methods in the text basedimageretrievaltask,andweclearlyoutperformstateoftheartintheMIRFlickrdatasetwhen training in the target data. Further, we demonstrate how semantic multimodal image retrieval can be performed using the learnt embeddings, going beyond classical instance-level retrieval problems. Finally, we present a new dataset, InstaCities1M, composed by Instagram images and their associated texts that can be used for fair comparison of image-text embeddings. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.129; 601.338; 601.310 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GGG2019 |
Serial |
3266 |
|
Permanent link to this record |
|
|
|
|
Author  |
Raul Gomez; Jaume Gibert; Lluis Gomez; Dimosthenis Karatzas |


|
|
Title |
Exploring Hate Speech Detection in Multimodal Publications |
Type |
Conference Article |
|
Year |
2020 |
Publication |
IEEE Winter Conference on Applications of Computer Vision |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
In this work we target the problem of hate speech detection in multimodal publications formed by a text and an image. We gather and annotate a large scale dataset from Twitter, MMHS150K, and propose different models that jointly analyze textual and visual information for hate speech detection, comparing them with unimodal detection. We provide quantitative and qualitative results and analyze the challenges of the proposed task. We find that, even though images are useful for the hate speech detection task, current multimodal models cannot outperform models analyzing only text. We discuss why and open the field and the dataset for further research. |
|
|
Address |
Aspen; March 2020 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
WACV |
|
|
Notes |
DAG; 600.121; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GGG2020a |
Serial |
3280 |
|
Permanent link to this record |