|
Records |
Links |
|
Author |
Salvatore Tabbone; Josep Llados |
|
|
Title |
A Propos de la Reconnaissance de Documents Graphiques: Synthese et Perspectives |
Type |
Conference Article |
|
Year |
2007 |
Publication |
Traitement et Analyse de l’Information: Methodes et Applications |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
247–258 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Hammamet (Tunis) |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
TAIMA’07 |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ TaL2007 |
Serial |
890 |
|
Permanent link to this record |
|
|
|
|
Author |
Salim Jouili; Salvatore Tabbone; Ernest Valveny |
|
|
Title |
Comparing Graph Similarity Measures for Graphical Recognition |
Type |
Book Chapter |
|
Year |
2010 |
Publication |
Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers |
Abbreviated Journal |
|
|
|
Volume |
6020 |
Issue |
|
Pages |
37-48 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we evaluate four graph distance measures. The analysis is performed for document retrieval tasks. For this aim, different kind of documents are used including line drawings (symbols), ancient documents (ornamental letters), shapes and trademark-logos. The experimental results show that the performance of each graph distance measure depends on the kind of data and the graph representation technique. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-642-13727-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ JTV2010 |
Serial |
2404 |
|
Permanent link to this record |
|
|
|
|
Author |
Salim Jouili; Salvatore Tabbone; Ernest Valveny |
|
|
Title |
Evaluation of graph matching measures for documents retrieval |
Type |
Conference Article |
|
Year |
2009 |
Publication |
In proceedings of 8th IAPR International Workshop on Graphics Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
13–21 |
|
|
Keywords |
Graph Matching; Graph retrieval; structural representation; Performance Evaluation |
|
|
Abstract |
In this paper we evaluate four graph distance measures. The analysis is performed for document retrieval tasks. For this aim, different kind of documents are used which include line drawings (symbols), ancient documents (ornamental letters), shapes and trademark-logos. The experimental results show that the performance of each grahp distance measure depends on the kind of data and the graph representation technique. |
|
|
Address |
La Rochelle, France |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-642-13727-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ JTV2009a |
Serial |
1230 |
|
Permanent link to this record |
|
|
|
|
Author |
Salim Jouili; Salvatore Tabbone; Ernest Valveny |
|
|
Title |
Comparing Graph Similarity Measures for Graphical Recognition. |
Type |
Conference Article |
|
Year |
2009 |
Publication |
8th IAPR International Workshop on Graphics Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
In this paper we evaluate four graph distance measures. The analysis is performed for document retrieval tasks. For this aim, different kind of documents are used including line drawings (symbols), ancient documents (ornamental letters), shapes and trademark-logos. The experimental results show that the performance of each graph distance measure depends on the kind of data and the graph representation technique. |
|
|
Address |
La Rochelle; France; July 2009 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ JTV2009 |
Serial |
1442 |
|
Permanent link to this record |
|
|
|
|
Author |
S.K. Jemni; Mohamed Ali Souibgui; Yousri Kessentini; Alicia Fornes |
|
|
Title |
Enhance to Read Better: A Multi-Task Adversarial Network for Handwritten Document Image Enhancement |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
123 |
Issue |
|
Pages |
108370 |
|
|
Keywords |
|
|
|
Abstract |
Handwritten document images can be highly affected by degradation for different reasons: Paper ageing, daily-life scenarios (wrinkles, dust, etc.), bad scanning process and so on. These artifacts raise many readability issues for current Handwritten Text Recognition (HTR) algorithms and severely devalue their efficiency. In this paper, we propose an end to end architecture based on Generative Adversarial Networks (GANs) to recover the degraded documents into a and form. Unlike the most well-known document binarization methods, which try to improve the visual quality of the degraded document, the proposed architecture integrates a handwritten text recognizer that promotes the generated document image to be more readable. To the best of our knowledge, this is the first work to use the text information while binarizing handwritten documents. Extensive experiments conducted on degraded Arabic and Latin handwritten documents demonstrate the usefulness of integrating the recognizer within the GAN architecture, which improves both the visual quality and the readability of the degraded document images. Moreover, we outperform the state of the art in H-DIBCO challenges, after fine tuning our pre-trained model with synthetically degraded Latin handwritten images, on this task. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.124; 600.121; 602.230 |
Approved |
no |
|
|
Call Number |
Admin @ si @ JSK2022 |
Serial |
3613 |
|
Permanent link to this record |
|
|
|
|
Author |
S. Chanda; Umapada Pal; Oriol Ramos Terrades |
|
|
Title |
Word-Wise Thai and Roman Script Identification |
Type |
Journal |
|
Year |
2009 |
Publication |
ACM Transactions on Asian Language Information Processing |
Abbreviated Journal |
TALIP |
|
|
Volume |
8 |
Issue |
3 |
Pages |
1-21 |
|
|
Keywords |
|
|
|
Abstract |
In some Thai documents, a single text line of a printed document page may contain words of both Thai and Roman scripts. For the Optical Character Recognition (OCR) of such a document page it is better to identify, at first, Thai and Roman script portions and then to use individual OCR systems of the respective scripts on these identified portions. In this article, an SVM-based method is proposed for identification of word-wise printed Roman and Thai scripts from a single line of a document page. Here, at first, the document is segmented into lines and then lines are segmented into character groups (words). In the proposed scheme, we identify the script of a character group combining different character features obtained from structural shape, profile behavior, component overlapping information, topological properties, and water reservoir concept, etc. Based on the experiment on 10,000 data (words) we obtained 99.62% script identification accuracy from the proposed scheme. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1530-0226 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ CPR2009f |
Serial |
1869 |
|
Permanent link to this record |
|
|
|
|
Author |
S. Chanda; Oriol Ramos Terrades; Umapada Pal |
|
|
Title |
SVM Based Scheme for Thai and English Script Identification |
Type |
Conference Article |
|
Year |
2007 |
Publication |
9th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
1 |
Issue |
|
Pages |
551–555 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Curitiba (Brazil) |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ CRP2007a |
Serial |
885 |
|
Permanent link to this record |
|
|
|
|
Author |
Rui Zhang; Yongsheng Zhou; Qianyi Jiang; Qi Song; Nan Li; Kai Zhou; Lei Wang; Dong Wang; Minghui Liao; Mingkun Yang; Xiang Bai; Baoguang Shi; Dimosthenis Karatzas; Shijian Lu; CV Jawahar |
|
|
Title |
ICDAR 2019 Robust Reading Challenge on Reading Chinese Text on Signboard |
Type |
Conference Article |
|
Year |
2019 |
Publication |
15th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1577-1581 |
|
|
Keywords |
|
|
|
Abstract |
Chinese scene text reading is one of the most challenging problems in computer vision and has attracted great interest. Different from English text, Chinese has more than 6000 commonly used characters and Chinesecharacters can be arranged in various layouts with numerous fonts. The Chinese signboards in street view are a good choice for Chinese scene text images since they have different backgrounds, fonts and layouts. We organized a competition called ICDAR2019-ReCTS, which mainly focuses on reading Chinese text on signboard. This report presents the final results of the competition. A large-scale dataset of 25,000 annotated signboard images, in which all the text lines and characters are annotated with locations and transcriptions, were released. Four tasks, namely character recognition, text line recognition, text line detection and end-to-end recognition were set up. Besides, considering the Chinese text ambiguity issue, we proposed a multi ground truth (multi-GT) evaluation method to make evaluation fairer. The competition started on March 1, 2019 and ended on April 30, 2019. 262 submissions from 46 teams are received. Most of the participants come from universities, research institutes, and tech companies in China. There are also some participants from the United States, Australia, Singapore, and Korea. 21 teams submit results for Task 1, 23 teams submit results for Task 2, 24 teams submit results for Task 3, and 13 teams submit results for Task 4. |
|
|
Address |
Sydney; Australia; September 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.129; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ LZZ2019 |
Serial |
3335 |
|
Permanent link to this record |
|
|
|
|
Author |
Ruben Tito; Minesh Mathew; C.V. Jawahar; Ernest Valveny; Dimosthenis Karatzas |
|
|
Title |
ICDAR 2021 Competition on Document Visual Question Answering |
Type |
Conference Article |
|
Year |
2021 |
Publication |
16th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
635-649 |
|
|
Keywords |
|
|
|
Abstract |
In this report we present results of the ICDAR 2021 edition of the Document Visual Question Challenges. This edition complements the previous tasks on Single Document VQA and Document Collection VQA with a newly introduced on Infographics VQA. Infographics VQA is based on a new dataset of more than 5, 000 infographics images and 30, 000 question-answer pairs. The winner methods have scored 0.6120 ANLS in Infographics VQA task, 0.7743 ANLSL in Document Collection VQA task and 0.8705 ANLS in Single Document VQA. We present a summary of the datasets used for each task, description of each of the submitted methods and the results and analysis of their performance. A summary of the progress made on Single Document VQA since the first edition of the DocVQA 2020 challenge is also presented. |
|
|
Address |
VIRTUAL; Lausanne; Suissa; September 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TMJ2021 |
Serial |
3624 |
|
Permanent link to this record |
|
|
|
|
Author |
Ruben Tito; Khanh Nguyen; Marlon Tobaben; Raouf Kerkouche; Mohamed Ali Souibgui; Kangsoo Jung; Lei Kang; Ernest Valveny; Antti Honkela; Mario Fritz; Dimosthenis Karatzas |
|
|
Title |
Privacy-Aware Document Visual Question Answering |
Type |
Miscellaneous |
|
Year |
2023 |
Publication |
Arxiv |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Document Visual Question Answering (DocVQA) is a fast growing branch of document understanding. Despite the fact that documents contain sensitive or copyrighted information, none of the current DocVQA methods offers strong privacy guarantees.
In this work, we explore privacy in the domain of DocVQA for the first time. We highlight privacy issues in state of the art multi-modal LLM models used for DocVQA, and explore possible solutions.
Specifically, we focus on the invoice processing use case as a realistic, widely used scenario for document understanding, and propose a large scale DocVQA dataset comprising invoice documents and associated questions and answers. We employ a federated learning scheme, that reflects the real-life distribution of documents in different businesses, and we explore the use case where the ID of the invoice issuer is the sensitive information to be protected.
We demonstrate that non-private models tend to memorise, behaviour that can lead to exposing private information. We then evaluate baseline training schemes employing federated learning and differential privacy in this multi-modal scenario, where the sensitive information might be exposed through any of the two input modalities: vision (document image) or language (OCR tokens).
Finally, we design an attack exploiting the memorisation effect of the model, and demonstrate its effectiveness in probing different DocVQA models. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ PNT2023 |
Serial |
4012 |
|
Permanent link to this record |