toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author (down) Thanh Ha Do; Salvatore Tabbone; Oriol Ramos Terrades edit   pdf
url  openurl
  Title Sparse representation over learned dictionary for symbol recognition Type Journal Article
  Year 2016 Publication Signal Processing Abbreviated Journal SP  
  Volume 125 Issue Pages 36-47  
  Keywords Symbol Recognition; Sparse Representation; Learned Dictionary; Shape Context; Interest Points  
  Abstract In this paper we propose an original sparse vector model for symbol retrieval task. More speci cally, we apply the K-SVD algorithm for learning a visual dictionary based on symbol descriptors locally computed around interest points. Results on benchmark datasets show that the obtained sparse representation is competitive related to state-of-the-art methods. Moreover, our sparse representation is invariant to rotation and scale transforms and also robust to degraded images and distorted symbols. Thereby, the learned visual dictionary is able to represent instances of unseen classes of symbols.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.061; 600.077 Approved no  
  Call Number Admin @ si @ DTR2016 Serial 2946  
Permanent link to this record
 

 
Author (down) Thanh Ha Do; Salvatore Tabbone; Oriol Ramos Terrades edit  openurl
  Title Spotting Symbol over Graphical Documents Via Sparsity in Visual Vocabulary Type Book Chapter
  Year 2016 Publication Recent Trends in Image Processing and Pattern Recognition Abbreviated Journal  
  Volume 709 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference RTIP2R  
  Notes DAG Approved no  
  Call Number Admin @ si @ HTR2016 Serial 2956  
Permanent link to this record
 

 
Author (down) Thanh Ha Do; Oriol Ramos Terrades; Salvatore Tabbone edit  url
openurl 
  Title DSD: document sparse-based denoising algorithm Type Journal Article
  Year 2019 Publication Pattern Analysis and Applications Abbreviated Journal PAA  
  Volume 22 Issue 1 Pages 177–186  
  Keywords Document denoising; Sparse representations; Sparse dictionary learning; Document degradation models  
  Abstract In this paper, we present a sparse-based denoising algorithm for scanned documents. This method can be applied to any kind of scanned documents with satisfactory results. Unlike other approaches, the proposed approach encodes noise documents through sparse representation and visual dictionary learning techniques without any prior noise model. Moreover, we propose a precision parameter estimator. Experiments on several datasets demonstrate the robustness of the proposed approach compared to the state-of-the-art methods on document denoising.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ DRT2019 Serial 3254  
Permanent link to this record
 

 
Author (down) T.O. Nguyen; Salvatore Tabbone; Oriol Ramos Terrades; A.T. Thierry edit  openurl
  Title Proposition d'un descripteur de formes et du modèle vectoriel pour la recherche de symboles Type Conference Article
  Year 2008 Publication Colloque International Francophone sur l'Ecrit et le Document Abbreviated Journal  
  Volume Issue Pages 79-84  
  Keywords  
  Abstract  
  Address Rouen, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CIFED  
  Notes DAG Approved no  
  Call Number Admin @ si @ NTR2008b Serial 1875  
Permanent link to this record
 

 
Author (down) T.O. Nguyen; Salvatore Tabbone; Oriol Ramos Terrades edit  openurl
  Title Symbol Descriptor Based on Shape Context and Vector Model of Information Retrieval Type Conference Article
  Year 2008 Publication Proceedings of the 8th IAPR International Workshop on Document Analysis Systems, Abbreviated Journal  
  Volume Issue Pages 191-197  
  Keywords  
  Abstract  
  Address Nara, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG Approved no  
  Call Number Admin @ si @ NTR2008a Serial 1873  
Permanent link to this record
 

 
Author (down) T.Chauhan; E.Perales; Kaida Xiao; E.Hird ; Dimosthenis Karatzas; Sophie Wuerger edit  doi
openurl 
  Title The achromatic locus: Effect of navigation direction in color space Type Journal Article
  Year 2014 Publication Journal of Vision Abbreviated Journal VSS  
  Volume 14 (1) Issue 25 Pages 1-11  
  Keywords achromatic; unique hues; color constancy; luminance; color space  
  Abstract 5Y Impact Factor: 2.99 / 1st (Ophthalmology)
An achromatic stimulus is defined as a patch of light that is devoid of any hue. This is usually achieved by asking observers to adjust the stimulus such that it looks neither red nor green and at the same time neither yellow nor blue. Despite the theoretical and practical importance of the achromatic locus, little is known about the variability in these settings. The main purpose of the current study was to evaluate whether achromatic settings were dependent on the task of the observers, namely the navigation direction in color space. Observers could either adjust the test patch along the two chromatic axes in the CIE u*v* diagram or, alternatively, navigate along the unique-hue lines. Our main result is that the navigation method affects the reliability of these achromatic settings. Observers are able to make more reliable achromatic settings when adjusting the test patch along the directions defined by the four unique hues as opposed to navigating along the main axes in the commonly used CIE u*v* chromaticity plane. This result holds across different ambient viewing conditions (Dark, Daylight, Cool White Fluorescent) and different test luminance levels (5, 20, and 50 cd/m2). The reduced variability in the achromatic settings is consistent with the idea that internal color representations are more aligned with the unique-hue lines than the u* and v* axes.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ CPX2014 Serial 2418  
Permanent link to this record
 

 
Author (down) Suman Ghosh; Lluis Gomez; Dimosthenis Karatzas; Ernest Valveny edit   pdf
doi  openurl
  Title Efficient indexing for Query By String text retrieval Type Conference Article
  Year 2015 Publication 6th IAPR International Workshop on Camera Based Document Analysis and Recognition CBDAR2015 Abbreviated Journal  
  Volume Issue Pages 1236 - 1240  
  Keywords  
  Abstract This paper deals with Query By String word spotting in scene images. A hierarchical text segmentation algorithm based on text specific selective search is used to find text regions. These regions are indexed per character n-grams present in the text region. An attribute representation based on Pyramidal Histogram of Characters (PHOC) is used to compare text regions with the query text. For generation of the index a similar attribute space based Pyramidal Histogram of character n-grams is used. These attribute models are learned using linear SVMs over the Fisher Vector [1] representation of the images along with the PHOC labels of the corresponding strings.  
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CBDAR  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ GGK2015 Serial 2693  
Permanent link to this record
 

 
Author (down) Suman Ghosh; Ernest Valveny edit   pdf
url  doi
openurl 
  Title Query by String word spotting based on character bi-gram indexing Type Conference Article
  Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 881-885  
  Keywords  
  Abstract In this paper we propose a segmentation-free query by string word spotting method. Both the documents and query strings are encoded using a recently proposed word representa- tion that projects images and strings into a common atribute space based on a pyramidal histogram of characters(PHOC). These attribute models are learned using linear SVMs over the Fisher Vector representation of the images along with the PHOC labels of the corresponding strings. In order to search through the whole page, document regions are indexed per character bi- gram using a similar attribute representation. On top of that, we propose an integral image representation of the document using a simplified version of the attribute model for efficient computation. Finally we introduce a re-ranking step in order to boost retrieval performance. We show state-of-the-art results for segmentation-free query by string word spotting in single-writer and multi-writer standard datasets  
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ GhV2015a Serial 2715  
Permanent link to this record
 

 
Author (down) Suman Ghosh; Ernest Valveny edit   pdf
doi  isbn
openurl 
  Title A Sliding Window Framework for Word Spotting Based on Word Attributes Type Conference Article
  Year 2015 Publication Pattern Recognition and Image Analysis, Proceedings of 7th Iberian Conference , ibPRIA 2015 Abbreviated Journal  
  Volume 9117 Issue Pages 652-661  
  Keywords Word spotting; Sliding window; Word attributes  
  Abstract In this paper we propose a segmentation-free approach to word spotting. Word images are first encoded into feature vectors using Fisher Vector. Then, these feature vectors are used together with pyramidal histogram of characters labels (PHOC) to learn SVM-based attribute models. Documents are represented by these PHOC based word attributes. To efficiently compute the word attributes over a sliding window, we propose to use an integral image representation of the document using a simplified version of the attribute model. Finally we re-rank the top word candidates using the more discriminative full version of the word attributes. We show state-of-the-art results for segmentation-free query-by-example word spotting in single-writer and multi-writer standard datasets.  
  Address Santiago de Compostela; June 2015  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-319-19389-2 Medium  
  Area Expedition Conference IbPRIA  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ GhV2015b Serial 2716  
Permanent link to this record
 

 
Author (down) Suman Ghosh; Ernest Valveny edit   pdf
doi  openurl
  Title R-PHOC: Segmentation-Free Word Spotting using CNN Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords Convolutional neural network; Image segmentation; Artificial neural network; Nearest neighbor search  
  Abstract arXiv:1707.01294
This paper proposes a region based convolutional neural network for segmentation-free word spotting. Our network takes as input an image and a set of word candidate bound- ing boxes and embeds all bounding boxes into an embedding space, where word spotting can be casted as a simple nearest neighbour search between the query representation and each of the candidate bounding boxes. We make use of PHOC embedding as it has previously achieved significant success in segmentation- based word spotting. Word candidates are generated using a simple procedure based on grouping connected components using some spatial constraints. Experiments show that R-PHOC which operates on images directly can improve the current state-of- the-art in the standard GW dataset and performs as good as PHOCNET in some cases designed for segmentation based word spotting.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ GhV2017a Serial 3079  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: