|
Records |
Links |
|
Author  |
R. Bertrand; Oriol Ramos Terrades; P. Gomez-Kramer; P. Franco; Jean-Marc Ogier |

|
|
Title |
A Conditional Random Field model for font forgery detection |
Type |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
576 - 580 |
|
|
Keywords |
|
|
|
Abstract |
Nowadays, document forgery is becoming a real issue. A large amount of documents that contain critical information as payment slips, invoices or contracts, are constantly subject to fraudster manipulation because of the lack of security regarding this kind of document. Previously, a system to detect fraudulent documents based on its intrinsic features has been presented. It was especially designed to retrieve copy-move forgery and imperfection due to fraudster manipulation. However, when a set of characters is not present in the original document, copy-move forgery is not feasible. Hence, the fraudster will use a text toolbox to add or modify information in the document by imitating the font or he will cut and paste characters from another document where the font properties are similar. This often results in font type errors. Thus, a clue to detect document forgery consists of finding characters, words or sentences in a document with font properties different from their surroundings. To this end, we present in this paper an automatic forgery detection method based on document font features. Using the Conditional Random Field a measurement of probability that a character belongs to a specific font is made by comparing the character font features to a knowledge database. Then, the character is classified as a genuine or a fake one by comparing its probability to belong to a certain font type with those of the neighboring characters. |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BRG2015 |
Serial |
2725 |
|
Permanent link to this record |
|
|
|
|
Author  |
Q. Bao; Marçal Rusiñol; M.Coustaty; Muhammad Muzzamil Luqman; C.D. Tran; Jean-Marc Ogier |


|
|
Title |
Delaunay triangulation-based features for Camera-based document image retrieval system |
Type |
Conference Article |
|
Year |
2016 |
Publication |
12th IAPR Workshop on Document Analysis Systems |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1-6 |
|
|
Keywords |
Camera-based Document Image Retrieval; Delaunay Triangulation; Feature descriptors; Indexing |
|
|
Abstract |
In this paper, we propose a new feature vector, named DElaunay TRIangulation-based Features (DETRIF), for real-time camera-based document image retrieval. DETRIF is computed based on the geometrical constraints from each pair of adjacency triangles in delaunay triangulation which is constructed from centroids of connected components. Besides, we employ a hashing-based indexing system in order to evaluate the performance of DETRIF and to compare it with other systems such as LLAH and SRIF. The experimentation is carried out on two datasets comprising of 400 heterogeneous-content complex linguistic map images (huge size, 9800 X 11768 pixels resolution)and 700 textual document images. |
|
|
Address |
Santorini; Greece; April 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DAS |
|
|
Notes |
DAG; 600.061; 600.084; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BRC2016 |
Serial |
2757 |
|
Permanent link to this record |
|
|
|
|
Author  |
Philippe Dosch; Josep Llados |

|
|
Title |
Vectorial Signatures for Symbol Discrimination |
Type |
Miscellaneous |
|
Year |
2003 |
Publication |
Proceedings of Fifth IAPR International Workshop on Graphics Recognition, 159–169 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Barcelona |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ DoL2003 |
Serial |
373 |
|
Permanent link to this record |
|
|
|
|
Author  |
Philippe Dosch; Josep Llados |

|
|
Title |
Vectorial Signatures for Symbol Discrimination |
Type |
Miscellaneous |
|
Year |
2004 |
Publication |
Graphics Recognition: Recent Advances and Perspectives, J. Llados, Y.B. Kwon (Eds.), Lecture Notes in Computer Science, 3088:150–161, ISBN: 3–540–22478–5 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Springer-Verlag |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ DoL2004 |
Serial |
461 |
|
Permanent link to this record |
|
|
|
|
Author  |
Philippe Dosch; Ernest Valveny |

|
|
Title |
Report on the Second Symbol Recognition Contest |
Type |
Book Chapter |
|
Year |
2006 |
Publication |
Graphics Recognition: Ten Years Review and Future Perspectives, W. Liu, J. Llados (Eds.), LNCS 3926: 381–397 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ DoV2006 |
Serial |
691 |
|
Permanent link to this record |
|
|
|
|
Author  |
Pau Torras; Mohamed Ali Souibgui; Sanket Biswas; Alicia Fornes |

|
|
Title |
Segmentation-Free Alignment of Arbitrary Symbol Transcripts to Images |
Type |
Conference Article |
|
Year |
2023 |
Publication |
Document Analysis and Recognition – ICDAR 2023 Workshops |
Abbreviated Journal |
|
|
|
Volume |
14193 |
Issue |
|
Pages |
83-93 |
|
|
Keywords |
Historical Manuscripts; Symbol Alignment |
|
|
Abstract |
Developing arbitrary symbol recognition systems is a challenging endeavour. Even using content-agnostic architectures such as few-shot models, performance can be substantially improved by providing a number of well-annotated examples into training. In some contexts, transcripts of the symbols are available without any position information associated to them, which enables using line-level recognition architectures. A way of providing this position information to detection-based architectures is finding systems that can align the input symbols with the transcription. In this paper we discuss some symbol alignment techniques that are suitable for low-data scenarios and provide an insight on their perceived strengths and weaknesses. In particular, we study the usage of Connectionist Temporal Classification models, Attention-Based Sequence to Sequence models and we compare them with the results obtained on a few-shot recognition system. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ TSS2023 |
Serial |
3850 |
|
Permanent link to this record |
|
|
|
|
Author  |
Pau Torras; Mohamed Ali Souibgui; Jialuo Chen; Alicia Fornes |

|
|
Title |
A Transcription Is All You Need: Learning to Align through Attention |
Type |
Conference Article |
|
Year |
2021 |
Publication |
14th IAPR International Workshop on Graphics Recognition |
Abbreviated Journal |
|
|
|
Volume |
12916 |
Issue |
|
Pages |
141–146 |
|
|
Keywords |
|
|
|
Abstract |
Historical ciphered manuscripts are a type of document where graphical symbols are used to encrypt their content instead of regular text. Nowadays, expert transcriptions can be found in libraries alongside the corresponding manuscript images. However, those transcriptions are not aligned, so these are barely usable for training deep learning-based recognition methods. To solve this issue, we propose a method to align each symbol in the transcript of an image with its visual representation by using an attention-based Sequence to Sequence (Seq2Seq) model. The core idea is that, by learning to recognise symbols sequence within a cipher line image, the model also identifies their position implicitly through an attention mechanism. Thus, the resulting symbol segmentation can be later used for training algorithms. The experimental evaluation shows that this method is promising, especially taking into account the small size of the cipher dataset. |
|
|
Address |
Virtual; September 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG; 602.230; 600.140; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TSC2021 |
Serial |
3619 |
|
Permanent link to this record |
|
|
|
|
Author  |
Pau Torras; Arnau Baro; Lei Kang; Alicia Fornes |

|
|
Title |
On the Integration of Language Models into Sequence to Sequence Architectures for Handwritten Music Recognition |
Type |
Conference Article |
|
Year |
2021 |
Publication |
International Society for Music Information Retrieval Conference |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
690-696 |
|
|
Keywords |
|
|
|
Abstract |
Despite the latest advances in Deep Learning, the recognition of handwritten music scores is still a challenging endeavour. Even though the recent Sequence to Sequence(Seq2Seq) architectures have demonstrated its capacity to reliably recognise handwritten text, their performance is still far from satisfactory when applied to historical handwritten scores. Indeed, the ambiguous nature of handwriting, the non-standard musical notation employed by composers of the time and the decaying state of old paper make these scores remarkably difficult to read, sometimes even by trained humans. Thus, in this work we explore the incorporation of language models into a Seq2Seq-based architecture to try to improve transcriptions where the aforementioned unclear writing produces statistically unsound mistakes, which as far as we know, has never been attempted for this field of research on this architecture. After studying various Language Model integration techniques, the experimental evaluation on historical handwritten music scores shows a significant improvement over the state of the art, showing that this is a promising research direction for dealing with such difficult manuscripts. |
|
|
Address |
Virtual; November 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ISMIR |
|
|
Notes |
DAG; 600.140; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TBK2021 |
Serial |
3616 |
|
Permanent link to this record |
|
|
|
|
Author  |
Pau Torras; Arnau Baro; Alicia Fornes; Lei Kang |

|
|
Title |
Improving Handwritten Music Recognition through Language Model Integration |
Type |
Conference Article |
|
Year |
2022 |
Publication |
4th International Workshop on Reading Music Systems (WoRMS2022) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
42-46 |
|
|
Keywords |
optical music recognition; historical sources; diversity; music theory; digital humanities |
|
|
Abstract |
Handwritten Music Recognition, especially in the historical domain, is an inherently challenging endeavour; paper degradation artefacts and the ambiguous nature of handwriting make recognising such scores an error-prone process, even for the current state-of-the-art Sequence to Sequence models. In this work we propose a way of reducing the production of statistically implausible output sequences by fusing a Language Model into a recognition Sequence to Sequence model. The idea is leveraging visually-conditioned and context-conditioned output distributions in order to automatically find and correct any mistakes that would otherwise break context significantly. We have found this approach to improve recognition results to 25.15 SER (%) from a previous best of 31.79 SER (%) in the literature. |
|
|
Address |
November 18, 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
WoRMS |
|
|
Notes |
DAG; 600.121; 600.162; 602.230 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TBF2022 |
Serial |
3735 |
|
Permanent link to this record |
|
|
|
|
Author  |
Pau Riba; Sounak Dey; Ali Furkan Biten; Josep Llados |

|
|
Title |
Localizing Infinity-shaped fishes: Sketch-guided object localization in the wild |
Type |
Miscellaneous |
|
Year |
2021 |
Publication |
Arxiv |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This work investigates the problem of sketch-guided object localization (SGOL), where human sketches are used as queries to conduct the object localization in natural images. In this cross-modal setting, we first contribute with a tough-to-beat baseline that without any specific SGOL training is able to outperform the previous works on a fixed set of classes. The baseline is useful to analyze the performance of SGOL approaches based on available simple yet powerful methods. We advance prior arts by proposing a sketch-conditioned DETR (DEtection TRansformer) architecture which avoids a hard classification and alleviates the domain gap between sketches and images to localize object instances. Although the main goal of SGOL is focused on object detection, we explored its natural extension to sketch-guided instance segmentation. This novel task allows to move towards identifying the objects at pixel level, which is of key importance in several applications. We experimentally demonstrate that our model and its variants significantly advance over previous state-of-the-art results. All training and testing code of our model will be released to facilitate future researchhttps://github.com/priba/sgol_wild. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RDB2021 |
Serial |
3674 |
|
Permanent link to this record |