|
Records |
Links |
|
Author |
Sanket Biswas; Pau Riba; Josep Llados; Umapada Pal |
|
|
Title |
Graph-Based Deep Generative Modelling for Document Layout Generation |
Type |
Conference Article |
|
Year |
2021 |
Publication |
16th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
12917 |
Issue |
|
Pages |
525-537 |
|
|
Keywords |
|
|
|
Abstract |
One of the major prerequisites for any deep learning approach is the availability of large-scale training data. When dealing with scanned document images in real world scenarios, the principal information of its content is stored in the layout itself. In this work, we have proposed an automated deep generative model using Graph Neural Networks (GNNs) to generate synthetic data with highly variable and plausible document layouts that can be used to train document interpretation systems, in this case, specially in digital mailroom applications. It is also the first graph-based approach for document layout generation task experimented on administrative document images, in this case, invoices. |
|
|
Address |
Lausanne; Suissa; September 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121; 600.140; 110.312 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BRL2021 |
Serial |
3676 |
|
Permanent link to this record |
|
|
|
|
Author |
Josep Llados |
|
|
Title |
The 5G of Document Intelligence |
Type |
Conference Article |
|
Year |
2021 |
Publication |
3rd Workshop on Future of Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Lausanne; Suissa; September 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
FDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ |
Serial |
3677 |
|
Permanent link to this record |
|
|
|
|
Author |
Agnes Borras; Josep Llados |
|
|
Title |
Corest: A measure of color and space stability to detect salient regions according to human criteria |
Type |
Conference Article |
|
Year |
2009 |
Publication |
5th International Conference on Computer Vision Theory and Applications |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
204-209 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Lisboa, Portugal |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-989-8111-69-2 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
VISAPP |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ BoL2009 |
Serial |
1225 |
|
Permanent link to this record |
|
|
|
|
Author |
Partha Pratim Roy; Josep Llados; Umapada Pal |
|
|
Title |
A Complete System for Detection and Recognition of Text in Graphical Documents using Background Information |
Type |
Conference Article |
|
Year |
2009 |
Publication |
5th International Conference on Computer Vision Theory and Applications |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Lisboa, Portugal |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-989-8111-69-2 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
VISAPP |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ RLP2009 |
Serial |
1238 |
|
Permanent link to this record |
|
|
|
|
Author |
Carlos David Martinez Hinarejos; Josep Llados; Alicia Fornes; Francisco Casacuberta; Lluis de Las Heras; Joan Mas; Moises Pastor; Oriol Ramos Terrades; Joan Andreu Sanchez; Enrique Vidal; Fernando Vilariño |
|
|
Title |
Context, multimodality, and user collaboration in handwritten text processing: the CoMUN-HaT project |
Type |
Conference Article |
|
Year |
2016 |
Publication |
3rd IberSPEECH |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Processing of handwritten documents is a task that is of wide interest for many
purposes, such as those related to preserve cultural heritage. Handwritten text recognition techniques have been successfully applied during the last decade to obtain transcriptions of handwritten documents, and keyword spotting techniques have been applied for searching specific terms in image collections of handwritten documents. However, results on transcription and indexing are far from perfect. In this framework, the use of new data sources arises as a new paradigm that will allow for a better transcription and indexing of handwritten documents. Three main different data sources could be considered: context of the document (style, writer, historical time, topics,. . . ), multimodal data (representations of the document in a different modality, such as the speech signal of the dictation of the text), and user feedback (corrections, amendments,. . . ). The CoMUN-HaT project aims at the integration of these different data sources into the transcription and indexing task for handwritten documents: the use of context derived from the analysis of the documents, how multimodality can aid the recognition process to obtain more accurate transcriptions (including transcription in a modern version of the language), and integration into a userin-the-loop assisted text transcription framework. This will be reflected in the construction of a transcription and indexing platform that can be used by both professional and nonprofessional users, contributing to crowd-sourcing activities to preserve cultural heritage and to obtain an accessible version of the involved corpus. |
|
|
Address |
Lisboa; Portugal; November 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
IberSPEECH |
|
|
Notes |
DAG; MV; 600.097;SIAI |
Approved |
no |
|
|
Call Number |
Admin @ si @MLF2016 |
Serial |
2813 |
|
Permanent link to this record |
|
|
|
|
Author |
Miquel Ferrer; Robert Benavente; Ernest Valveny; J. Garcia; Agata Lapedriza; Gemma Sanchez |
|
|
Title |
Aprendizaje Cooperativo Aplicado a la Docencia de las Asignaturas de Programacion en Ingenieria Informatica |
Type |
Miscellaneous |
|
Year |
2008 |
Publication |
Octava Jornada sobre Aprendizaje Cooperativo, 41–46 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Lleida (Spain). |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
OR;DAG;CIC;MV |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ FBV2008 |
Serial |
955 |
|
Permanent link to this record |
|
|
|
|
Author |
Josep Llados; Ernest Valveny; Gemma Sanchez; Enric Marti |
|
|
Title |
Symbol recognition: current advances and perspectives |
Type |
Book Chapter |
|
Year |
2002 |
Publication |
Graphics Recognition Algorithms And Applications |
Abbreviated Journal |
LNCS |
|
|
Volume |
2390 |
Issue |
|
Pages |
104-128 |
|
|
Keywords |
|
|
|
Abstract |
The recognition of symbols in graphic documents is an intensive research activity in the community of pattern recognition and document analysis. A key issue in the interpretation of maps, engineering drawings, diagrams, etc. is the recognition of domain dependent symbols according to a symbol database. In this work we first review the most outstanding symbol recognition methods from two different points of view: application domains and pattern recognition methods. In the second part of the paper, open and unaddressed problems involved in symbol recognition are described, analyzing their current state of art and discussing future research challenges. Thus, issues such as symbol representation, matching, segmentation, learning, scalability of recognition methods and performance evaluation are addressed in this work. Finally, we discuss the perspectives of symbol recognition concerning to new paradigms such as user interfaces in handheld computers or document database and WWW indexing by graphical content. |
|
|
Address |
London, UK |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer-Verlag |
Place of Publication |
|
Editor |
Dorothea Blostein and Young- Bin Kwon |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
Lecture Notes in Computer Science |
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
3-540-44066-6 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG; IAM; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ LVS2002 |
Serial |
1572 |
|
Permanent link to this record |
|
|
|
|
Author |
Sounak Dey; Pau Riba; Anjan Dutta; Josep Llados; Yi-Zhe Song |
|
|
Title |
Doodle to Search: Practical Zero-Shot Sketch-Based Image Retrieval |
Type |
Conference Article |
|
Year |
2019 |
Publication |
IEEE Conference on Computer Vision and Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
2179-2188 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we investigate the problem of zero-shot sketch-based image retrieval (ZS-SBIR), where human sketches are used as queries to conduct retrieval of photos from unseen categories. We importantly advance prior arts by proposing a novel ZS-SBIR scenario that represents a firm step forward in its practical application. The new setting uniquely recognizes two important yet often neglected challenges of practical ZS-SBIR, (i) the large domain gap between amateur sketch and photo, and (ii) the necessity for moving towards large-scale retrieval. We first contribute to the community a novel ZS-SBIR dataset, QuickDraw-Extended, that consists of 330,000 sketches and 204,000 photos spanning across 110 categories. Highly abstract amateur human sketches are purposefully sourced to maximize the domain gap, instead of ones included in existing datasets that can often be semi-photorealistic. We then formulate a ZS-SBIR framework to jointly model sketches and photos into a common embedding space. A novel strategy to mine the mutual information among domains is specifically engineered to alleviate the domain gap. External semantic knowledge is further embedded to aid semantic transfer. We show that, rather surprisingly, retrieval performance significantly outperforms that of state-of-the-art on existing datasets that can already be achieved using a reduced version of our model. We further demonstrate the superior performance of our full model by comparing with a number of alternatives on the newly proposed dataset. The new dataset, plus all training and testing code of our model, will be publicly released to facilitate future research. |
|
|
Address |
Long beach; CA; USA; June 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CVPR |
|
|
Notes |
DAG; 600.140; 600.121; 600.097 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DRD2019 |
Serial |
3462 |
|
Permanent link to this record |
|
|
|
|
Author |
Anjan Dutta; Zeynep Akata |
|
|
Title |
Semantically Tied Paired Cycle Consistency for Zero-Shot Sketch-based Image Retrieval |
Type |
Conference Article |
|
Year |
2019 |
Publication |
32nd IEEE Conference on Computer Vision and Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
5089-5098 |
|
|
Keywords |
|
|
|
Abstract |
Zero-shot sketch-based image retrieval (SBIR) is an emerging task in computer vision, allowing to retrieve natural images relevant to sketch queries that might not been seen in the training phase. Existing works either require aligned sketch-image pairs or inefficient memory fusion layer for mapping the visual information to a semantic space. In this work, we propose a semantically aligned paired cycle-consistent generative (SEM-PCYC) model for zero-shot SBIR, where each branch maps the visual information to a common semantic space via an adversarial training. Each of these branches maintains a cycle consistency that only requires supervision at category levels, and avoids the need of highly-priced aligned sketch-image pairs. A classification criteria on the generators' outputs ensures the visual to semantic space mapping to be discriminating. Furthermore, we propose to combine textual and hierarchical side information via a feature selection auto-encoder that selects discriminating side information within a same end-to-end model. Our results demonstrate a significant boost in zero-shot SBIR performance over the state-of-the-art on the challenging Sketchy and TU-Berlin datasets. |
|
|
Address |
Long beach; California; USA; June 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CVPR |
|
|
Notes |
DAG; 600.141; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DuA2019 |
Serial |
3268 |
|
Permanent link to this record |
|
|
|
|
Author |
Ali Furkan Biten; Lluis Gomez; Marçal Rusiñol; Dimosthenis Karatzas |
|
|
Title |
Good News, Everyone! Context driven entity-aware captioning for news images |
Type |
Conference Article |
|
Year |
2019 |
Publication |
32nd IEEE Conference on Computer Vision and Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
12458-12467 |
|
|
Keywords |
|
|
|
Abstract |
Current image captioning systems perform at a merely descriptive level, essentially enumerating the objects in the scene and their relations. Humans, on the contrary, interpret images by integrating several sources of prior knowledge of the world. In this work, we aim to take a step closer to producing captions that offer a plausible interpretation of the scene, by integrating such contextual information into the captioning pipeline. For this we focus on the captioning of images used to illustrate news articles. We propose a novel captioning method that is able to leverage contextual information provided by the text of news articles associated with an image. Our model is able to selectively draw information from the article guided by visual cues, and to dynamically extend the output dictionary to out-of-vocabulary named entities that appear in the context source. Furthermore we introduce“ GoodNews”, the largest news image captioning dataset in the literature and demonstrate state-of-the-art results. |
|
|
Address |
Long beach; California; USA; june 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CVPR |
|
|
Notes |
DAG; 600.129; 600.135; 601.338; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BGR2019 |
Serial |
3289 |
|
Permanent link to this record |