|
Records |
Links |
|
Author |
Lluis Gomez; Dimosthenis Karatzas |
|
|
Title |
A fast hierarchical method for multi‐script and arbitrary oriented scene text extraction |
Type |
Journal Article |
|
Year |
2016 |
Publication |
International Journal on Document Analysis and Recognition |
Abbreviated Journal |
IJDAR |
|
|
Volume |
19 |
Issue |
4 |
Pages |
335-349 |
|
|
Keywords |
scene text; segmentation; detection; hierarchical grouping; perceptual organisation |
|
|
Abstract |
Typography and layout lead to the hierarchical organisation of text in words, text lines, paragraphs. This inherent structure is a key property of text in any script and language, which has nonetheless been minimally leveraged by existing text detection methods. This paper addresses the problem of text
segmentation in natural scenes from a hierarchical perspective.
Contrary to existing methods, we make explicit use of text structure, aiming directly to the detection of region groupings corresponding to text within a hierarchy produced by an agglomerative similarity clustering process over individual regions. We propose an optimal way to construct such an hierarchy introducing a feature space designed to produce text group hypotheses with
high recall and a novel stopping rule combining a discriminative classifier and a probabilistic measure of group meaningfulness based in perceptual organization. Results obtained over four standard datasets, covering text in variable orientations and different languages, demonstrate that our algorithm, while being trained in a single mixed dataset, outperforms state of the art
methods in unconstrained scenarios. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.056; 601.197 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GoK2016a |
Serial |
2862 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Josep Llados; Alicia Fornes; Anjan Dutta |
|
|
Title |
Large-scale graph indexing using binary embeddings of node contexts for information spotting in document image databases |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
87 |
Issue |
|
Pages |
203-211 |
|
|
Keywords |
|
|
|
Abstract |
Graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their representational power in front of classical appearance-based representations. However, retrieving a query graph from a large dataset of graphs implies a high computational complexity. The most important property for a large-scale retrieval is the search time complexity to be sub-linear in the number of database examples. With this aim, in this paper we propose a graph indexation formalism applied to visual retrieval. A binary embedding is defined as hashing keys for graph nodes. Given a database of labeled graphs, graph nodes are complemented with vectors of attributes representing their local context. Then, each attribute vector is converted to a binary code applying a binary-valued hash function. Therefore, graph retrieval is formulated in terms of finding target graphs in the database whose nodes have a small Hamming distance from the query nodes, easily computed with bitwise logical operators. As an application example, we validate the performance of the proposed methods in different real scenarios such as handwritten word spotting in images of historical documents or symbol spotting in architectural floor plans. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.097; 602.006; 603.053; 600.121 |
Approved |
no |
|
|
Call Number |
RLF2017b |
Serial |
2873 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Gomez; Dimosthenis Karatzas |
|
|
Title |
TextProposals: a Text‐specific Selective Search Algorithm for Word Spotting in the Wild |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
70 |
Issue |
|
Pages |
60-74 |
|
|
Keywords |
|
|
|
Abstract |
Motivated by the success of powerful while expensive techniques to recognize words in a holistic way (Goel et al., 2013; Almazán et al., 2014; Jaderberg et al., 2016) object proposals techniques emerge as an alternative to the traditional text detectors. In this paper we introduce a novel object proposals method that is specifically designed for text. We rely on a similarity based region grouping algorithm that generates a hierarchy of word hypotheses. Over the nodes of this hierarchy it is possible to apply a holistic word recognition method in an efficient way.
Our experiments demonstrate that the presented method is superior in its ability of producing good quality word proposals when compared with class-independent algorithms. We show impressive recall rates with a few thousand proposals in different standard benchmarks, including focused or incidental text datasets, and multi-language scenarios. Moreover, the combination of our object proposals with existing whole-word recognizers (Almazán et al., 2014; Jaderberg et al., 2016) shows competitive performance in end-to-end word spotting, and, in some benchmarks, outperforms previously published results. Concretely, in the challenging ICDAR2015 Incidental Text dataset, we overcome in more than 10% F-score the best-performing method in the last ICDAR Robust Reading Competition (Karatzas, 2015). Source code of the complete end-to-end system is available at https://github.com/lluisgomez/TextProposals. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.084; 601.197; 600.121; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GoK2017 |
Serial |
2886 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Gomez; Anguelos Nicolaou; Dimosthenis Karatzas |
|
|
Title |
Improving patch‐based scene text script identification with ensembles of conjoined networks |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
67 |
Issue |
|
Pages |
85-96 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.084; 600.121; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GNK2017 |
Serial |
2887 |
|
Permanent link to this record |
|
|
|
|
Author |
Marc Sunset Perez; Marc Comino Trinidad; Dimosthenis Karatzas; Antonio Chica Calaf; Pere Pau Vazquez Alcocer |
|
|
Title |
Development of general‐purpose projection‐based augmented reality systems |
Type |
Journal |
|
Year |
2016 |
Publication |
IADIs international journal on computer science and information systems |
Abbreviated Journal |
IADIs |
|
|
Volume |
11 |
Issue |
2 |
Pages |
1-18 |
|
|
Keywords |
|
|
|
Abstract |
Despite the large amount of methods and applications of augmented reality, there is little homogenizatio n on the software platforms that support them. An exception may be the low level control software that is provided by some high profile vendors such as Qualcomm and Metaio. However, these provide fine grain modules for e.g. element tracking. We are more co ncerned on the application framework, that includes the control of the devices working together for the development of the AR experience. In this paper we describe the development of a software framework for AR setups. We concentrate on the modular design of the framework, but also on some hard problems such as the calibration stage, crucial for projection – based AR. The developed framework is suitable and has been tested in AR applications using camera – projector pairs, for both fixed and nomadic setups |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.084 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SCK2016 |
Serial |
2890 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Gomez |
|
|
Title |
Exploiting Similarity Hierarchies for Multi-script Scene Text Understanding |
Type |
Book Whole |
|
Year |
2016 |
Publication |
PhD Thesis, Universitat Autonoma de Barcelona-CVC |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This thesis addresses the problem of automatic scene text understanding in unconstrained conditions. In particular, we tackle the tasks of multi-language and arbitrary-oriented text detection, tracking, and script identification in natural scenes.
For this we have developed a set of generic methods that build on top of the basic observation that text has always certain key visual and structural characteristics that are independent of the language or script in which it is written. Text instances in any
language or script are always formed as groups of similar atomic parts, being them either individual characters, small stroke parts, or even whole words in the case of cursive text. This holistic (sumof-parts) and recursive perspective has lead us to explore different variants of the “segmentation and grouping” paradigm of computer vision.
Scene text detection methodologies are usually based in classification of individual regions or patches, using a priory knowledge for a given script or language. Human perception of text, on the other hand, is based on perceptual organization through which
text emerges as a perceptually significant group of atomic objects.
In this thesis, we argue that the text detection problem must be posed as the detection of meaningful groups of regions. We address the problem of text detection in natural scenes from a hierarchical perspective, making explicit use of the recursive nature of text, aiming directly to the detection of region groupings corresponding to text within a hierarchy produced by an agglomerative similarity clustering process over individual regions. We propose an optimal way to construct such an hierarchy introducing a feature space designed to produce text group hypothese with high recall and a novel stopping rule combining a discriminative classifier and a probabilistic measure of group meaningfulness based in perceptual organization. Within this generic framework, we design a text-specific object proposals algorithm that, contrary to existing generic object proposals methods, aims directly to the detection of text regions groupings. For this, we abandon the rigid definition of “what is text” of traditional specialized text detectors, and move towards more fuzzy perspective of grouping-based object proposals methods.
Then, we present a hybrid algorithm for detection and tracking of scene text where the notion of region groupings plays also a central role. By leveraging the structural arrangement of text group components between consecutive frames we can improve
the overall tracking performance of the system.
Finally, since our generic detection framework is inherently designed for multi-language environments, we focus on the problem of script identification in order to build a multi-language end-toend reading system. Facing this problem with state of the art CNN classifiers is not straightforward, as they fail to address a key
characteristic of scene text instances: their extremely variable aspect ratio. Instead of resizing input images to a fixed size as in the typical use of holistic CNN classifiers, we propose a patch-based classification framework in order to preserve discriminative parts of the image that are characteristic of its class. We describe a novel method based on the use of ensembles of conjoined networks to jointly learn discriminative stroke-parts representations and their relative importance in a patch-based classification scheme. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
Ph.D. thesis |
|
|
Publisher |
|
Place of Publication |
|
Editor |
Dimosthenis Karatzas |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ Gom2016 |
Serial |
2891 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; Josep Llados |
|
|
Title |
Flowchart Recognition in Patent Information Retrieval |
Type |
Book Chapter |
|
Year |
2017 |
Publication |
Current Challenges in Patent Information Retrieval |
Abbreviated Journal |
|
|
|
Volume |
37 |
Issue |
|
Pages |
351-368 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
M. Lupu; K. Mayer; N. Kando; A.J. Trippe |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.097; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RuL2017 |
Serial |
2896 |
|
Permanent link to this record |
|
|
|
|
Author |
Alicia Fornes; Josep Llados; Oriol Ramos Terrades; Marçal Rusiñol |
|
|
Title |
La Visió per Computador com a Eina per a la Interpretació Automàtica de Fonts Documentals |
Type |
Journal |
|
Year |
2016 |
Publication |
Lligall, Revista Catalana d'Arxivística |
Abbreviated Journal |
|
|
|
Volume |
39 |
Issue |
|
Pages |
20-46 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.097 |
Approved |
no |
|
|
Call Number |
Admin @ si @ FLR2016 |
Serial |
2897 |
|
Permanent link to this record |
|
|
|
|
Author |
Joana Maria Pujadas-Mora; Alicia Fornes; Josep Llados; Anna Cabre |
|
|
Title |
Bridging the gap between historical demography and computing: tools for computer-assisted transcription and the analysis of demographic sources |
Type |
Book Chapter |
|
Year |
2016 |
Publication |
The future of historical demography. Upside down and inside out |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
127-131 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Acco Publishers |
Place of Publication |
|
Editor |
K.Matthijs; S.Hin; H.Matsuo; J.Kok |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-94-6292-722-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.097 |
Approved |
no |
|
|
Call Number |
Admin @ si @ PFL2016 |
Serial |
2907 |
|
Permanent link to this record |
|
|
|
|
Author |
Hana Jarraya; Muhammad Muzzamil Luqman; Jean-Yves Ramel |
|
|
Title |
Improving Fuzzy Multilevel Graph Embedding Technique by Employing Topological Node Features: An Application to Graphics Recognition |
Type |
Book Chapter |
|
Year |
2017 |
Publication |
Graphics Recognition. Current Trends and Challenges |
Abbreviated Journal |
|
|
|
Volume |
9657 |
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer |
Place of Publication |
|
Editor |
B. Lamiroy; R Dueire Lins |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG; 600.097; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ JLR2017 |
Serial |
2928 |
|
Permanent link to this record |